
1

Time-varying MAR parameters

1.1 Time-varying MAR models

In this case study, we will use MARSS to fit a time-varying MAR model, that
is a MAR model in which the parameters are time-varying. In the economics
literature, such models are known as time-varying VAR models (TVAR). In
this example, we use a time-varying MAR to model a stage-structured popula-
tion with stage-specific survivals and fecundity that vary with time according
to an auto-regressive process. We assume for this case study that the data do
not have observation error; that is, that the observations are the true popu-
lation size. The models in this chapter are a form of dynamic linear model
(DLM), and the reader may want to review the chapter on DLMs (Chapter
??).

1.2 Univariate model

Before doing the multivariate case (time-varying MAR), we show a univariate
case or the time-varying AR model using a simple population model with
exponential growth. This model is written as follows:

nt = nt−1λt (1.1)

We will allow the λt to be some autoregressive process:

λt = bλt−1 + ut + wt ,wt ∼ N(0,σ2) (1.2)

Notice that we are not log-transforming the count data here and the variability
in population growth rate is modelled differently than in previous chapters.
In previous chapters, λt was modelled (implicitly) as exp(r + wt) where wt
are Gaussian errors. Written in log-space, this model becomes is log(nt) =
log(nt−1) + r + wt , and we have a linear model. This is one reason we would
normally log transform population count data. However, we are working up
to a multivariate version of this model, where we cannot convert to a linear
model by a log transformation.

2 1 TMAR

1.2.1 TAR: λt as white noise

The first model we will explore is λt fluctuating randomly (with Gaussian
noise) about some mean temporally-constant population growth rate. This
model is

λt = λ̄ + wt

nt = nt−1λt
(1.3)

This is different than the stochastic exponential model in which λt = λ̄exp(wt),
i.e. log-normal errors instead of normal errors, used in Chapter ??. Note, that
normal errors are not necessarily a terrible approximation to log-normal errors
if the variance of the errors is small and the mean is not close to 0. Figure
1.1, panel A, shows a trajectory of white noise λt .

0 20 40 60 80 120

0.
94

0.
98

1.
02

1.
06

t

r_
t

White Noise

A

0 20 40 60 80 120

0.
0

1.
0

2.
0

3.
0

t

λ(
t)

Random Walk

B

0 20 40 60 80 120

0.
6

1.
0

1.
4

t

λ(
t)

Mean−Reverting Random Walk

C

0 20 40 60 80 120

0.
6

1.
0

1.
4

t

λ(
t)

Covariate Driven

D

Fig. 1.1. Examples of λt trajectories for the four different λt models. Panels B and
C have multiple example trajectories. Each color of line uses the same input errors:
randomly drawn from a Normal distribution with mean of 0 and standard deviation
of 0.1. Mean-reversion (b) in panel C is 0.9. (λ̄) is 1.01. The covariate in panel D is
a sinusoidal plus linear upward trend.

1.2 Univariate model 3

Let’s create some simulated data with mean λt set at 1.01 (so an increasing
population).

set.seed(13) #an interesting case

TT=100 #number of time steps

barl=1.01 #mean lambda_t

n0 = 100 #starting population size

s2 = 0.001 #process variance

err=c(0,rnorm(TT,0,sqrt(s2))) #process errors

#white noise

n.wn = n0

lambdat=barl+err #mean + noise

for(i in 2:TT) n.wn[i] = n.wn[i-1]*lambdat[i]

We will fit these data using a MARSS model. To do this, we need to write
our model in MARSS form:

xt = Btxt−1 + ut + wt ,wt ∼ MVN(0,Q)

yt = Ztxt + at + vt ,vt ∼ MVN(0,R)
(1.4)

In this chapter, we are treating our observations as perfect so the observed
count at time t is nt . Our model then takes the general form

λt = bλt−1 + u + wt ,wt ∼ N(0,q)

nt = nt−1λt
(1.5)

Comparing Equation 1.5 to 1.4, we see that Zt ≡ nt−1, xt ≡ λt , B ≡ b, and the
other parameters, u, c and q, have the same names.

Equation 1.3 is our white noise λt model, and to make Equation 1.5 match
that, b = 0 and u = λ̄. Let’s fit this model with MARSS(). Remember that
even though we are starting with a univariate case, the MARSS() function
needs all parameters specified as matrices. Even scalars need to be specified
as 1×1 matrices.

Set up the data. We use data starting at year 2 so that we can use year 1
in Z1.

yt = n.wn[2:TT] #the simulated data

Set up the parameters for the y part of the MARSS model.

#Z is n at t-1 starting at t=1 up to t=TT-1

#to make Z time-varying, we set it up as an array

#the 3rd dim is the time dim

Z=array(n.wn[1:(TT-1)],dim=c(1,1,TT-1))

#no observation error and no a in the y equation

R = A = "zero"

Set up the parameters for the x part of the MARSS model.

4 1 TMAR

B="zero"

Q=matrix("q")

U=matrix("mean.lambda")

Specify the initial states. Because λ0, which is x0, does not appear in the
model, we can fix it at 0.

x0=V0="zero"

tinitx=0

Now we can fit the model using the MARSS() function.

model.uwn=list(Z=Z, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0, tinitx=tinitx)

tmp=MARSS(yt, model=model.uwn)

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -294.8938

AIC: 593.7875 AICc: 593.9125

Estimate

U.mean.lambda 1.007752

Q.q 0.000895

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Compare to the true values λ̄ = 1.01 and Q = 0.001. By the way, this is a
contrived example to build up to more complex models for λt . If you were
really trying to estimate λ̄ for this model, you could just use the mean of
nt/nt−1.

1.2.2 TAR: λt as a random walk

Next let’s fit a model where λt is a random walk. In this case, our λt model is

λt = λt−1 + wt ,wt ∼ N(0,q)

λ0 = λ̄
(1.6)

Notice that λ0 does appear in this model because λ1 = λ0 +w1 but the “mean”
λ does not appear since the mean is undefined for a random walk where b = 1.

Create some simulated data of the above:

1.2 Univariate model 5

set.seed(13) #an interesting case

TT=100 #number of time steps

lambda0=1.01 #starting lambda_t

n0 = 100 #starting population size

s2 = 0.001 #process variance

err=c(0,rnorm(TT,0,sqrt(s2))) #process errors

#random walk

n.rw = n0

lambdat=lambda0+cumsum(err) #cumsum creates random walk

#create the n

for(i in 2:TT) n.rw[i] = n.rw[i-1]*lambdat[i]

We set this up for MARSS as follows. Set up the data:

yt = n.rw[2:TT]

Set up the y part of the model.

Z=array(n.rw[1:(TT-1)],dim=c(1,1,TT-1))

R = "zero"; A="zero"

Set up the x part of the model.

B=matrix(1)

Q=matrix("q")

U="zero"

Set up the initial states.

x0=matrix("lambda0")

V0="zero"

tinitx=0

Fit the model.

model.urw=list(Z=Z, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0, tinitx=tinitx)

urw=MARSS(yt, model=model.urw)

Compare to the true values λ0 = 1.01 and Q = 0.001:

coef(urw, type="vector")

Q.q x0.lambda0

0.0008974413 1.0275293570

1.2.3 TAR: λt as a mean-reverting random walk

In this case, our λt model is

λt = bλt−1 + u + wt ,wt ∼ N(0,q) (1.7)

This process does have a mean level: u/(1−b) for −1 < b < 1.
Create some simulated data.

6 1 TMAR

set.seed(13) #an interesting case

TT=100 #number of time steps

barl=1.01 #mean lambda_t

b=0.9 #mean reversion level

n0 = 100 #starting population size

s2 = 0.001 #process variance

err=c(0,rnorm(TT,0,sqrt(s2))) #process errors

#random walk

n.mrrw = n0

lambdat=barl

#create the lambda t

for(i in 2:TT) lambdat[i] = b*lambdat[i-1]+barl*(1-b)+err[i]

#create the n

for(i in 2:TT) n.mrrw[i] = n.mrrw[i-1]*lambdat[i]

We set this up for MARSS as follows. Set up the data:

yt = n.mrrw[2:TT]

Set up the y part of the model.

Z=array(n.mrrw[1:(TT-1)],dim=c(1,1,TT-1))

R = "zero"; A="zero"

Set up the x part of the model.

B=matrix("b")

Q=matrix("q")

U=matrix("u")

Set up the initial states. We need to estimate λ0.

x0=matrix("lambda0")

V0="zero"

tinitx=0

Fit the model.

model.umrrw=list(Z=Z, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0, tinitx=tinitx)

umrrw=MARSS(yt, model=model.umrrw)

Compare the estimates to the true values b = 0.9, λ̄ = 1.01 and Q = 0.001:

coef(umrrw, type="vector")

B.b U.u Q.q x0.lambda0

0.9004102483 0.0980452380 0.0008916018 1.0322862463

1.2 Univariate model 7

1.2.4 Covariates for λ

Lastly we could also model λt as having a time-varying mean value driven by
some covariates (ct), such as seasonally varying temperature with an increasing
mean:

λt = λ̄ +
[
c1 c2

][Tt
t

]
+ wt (1.8)

c1 is the effect of temperture, T , on the mean population growth rate. c2 is
the linearly increasing (or decreasing) trend in population growth rate with
time. wt is some random noise on top of these two explanatory variables. λ̄ is
the mean level minus the temperature and time effects.

We start by creating some simulated data for this process.

TT=120

c1=0.15; c2=0.001

temp = sin(seq(1/12,TT/12,1/12)*pi)

s2 = 0.001 #process variance

err=c(0,rnorm(TT-1,0,sqrt(s2))) #process errors

#seasonally varying mean lambdat

lambdat=barl + c1*temp + c2*(1:TT) + err

#create the n

n.cov=n0

for(i in 2:TT) n.cov[i]=n.cov[i-1]*lambdat[i]

We set this up for MARSS as follows. Set up the data.

yt = n.cov[2:TT]

Set up the y part of the model.

Z=array(n.cov[1:(TT-1)],dim=c(1,1,TT-1))

R = "zero"; A="zero"

Set up the x part of the model. We use temperature starting at year 2 to
match the data starting at year 2.

B="zero"

U=matrix("mean.lambda")

Q = matrix("q")

C=matrix(c("1","2"),1,2)

c=rbind(temp[2:TT],1:(TT-1))

λ0 does not appear in the model so we can set it to 0.

x0=V0="zero"

tinitx=0

Fit the model as usual.

model.ucov=list(Z=Z, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0,

C=C, c=c, tinitx=tinitx)

ucov=MARSS(yt, model=model.ucov)

8 1 TMAR

Compare to the true values ctemp =0.15 and ctime = 0.001:

coef(ucov, type="vector")

U.mean.lambda Q.q C.1 C.2

1.010941986 0.001177924 0.152634429 0.001005300

1.3 TMAR: Multivariate time-varying model

Now let’s move to a multivariate model where we have stages and different
survivals and fecundities for the different stages. We will start with a popu-
lation with two life-stages (e.g., eggs and adults): n1 is stage 1 numbers and
n2 is stage 2 numbers. Let’s write this in a traditional manner using a Leslie
matrix to capture the population process:[

n1
n2

]
t
=

[
0 f
s φ

]
t

[
n1
n2

]
t−1

(1.9)

where f is fecundity (stage 2 to stage 1), s is stage 1 survival to stage 2, and φ

is stage 2 to stage 2 survival. There is no process error term explicitly included,
but it is implicitly included because the Leslie matrix is time-varying (notice
the t subscript).

We can re-write Equation 1.9 as:

[
n1
n2

]
t
=

[
n1 0 n2 0
0 n1 0 n2

]
t−1

0
s
f
φ

t

(1.10)

Notice the similarity to Equation 1.1 but now n is a matrix because we have
the numbers divided into stage 1 and stage 2. Equation 1.10 is a form of the
MARSS observation model in multivariate form:

yt = Ztxt (1.11)

where Zt a matrix with the n at time t − 1 and xt is a vector of the Leslie
matrix parameters at time t. The Leslie matrix parameters are then described
with the process model part of the MARSS model:

xt = Btxt + u + wt

wt ∼ MVN(0,Q)
(1.12)

This allows the Leslie matrix parameters to be time-varying and (potentially)
evolve over time as a random walk in the same way that we allowed λt to
evolve in the univariate case.

1.3 TMAR: Multivariate time-varying model 9

1.3.1 TMAR: Leslie matrix parameters as white noise

Let’s start with a model where the mean survivals and fecundity are constant
but they vary independently year-to-year. This model can be written:

0
f
s
φ

t

=

0
s̄
f̄
φ̄

+

0

w f
ws
wφ

t

,wt ∼ MVN(0,Q)

Q =

0 0 0 0
0 q f 0 0
0 0 qs 0
0 0 0 qφ

(1.13)

Let’s create some simulated data with a constant mean Leslie matrix. We
set survival of stage 1 to 20% and of stage 2 to 87%. Fecundity is set at 1.
This gives a λ (max eigenvalue) of 1.058 for the matrix.

TT = 30

s=0.2

phi=.87

f=1

LM=matrix(c(0,s,f,phi),2,2,)

q=0.05

We will simulate some data from this Leslie matrix with independent variabil-
ity added to the fecundity and survivals and then add observation error.

Ns=matrix(0,2,TT)

Ns[,1]=c(30,20) #starting pop size

for(t in 2:TT){

EM=matrix(rnorm(4,0,sqrt(q)),2,2)

#constrain survival to be less than or equal to 1

LMt = LM+EM; LMt[2,LMt[2,]>1]=1

Ns[,t]=LMt%*%Ns[,t-1,drop=FALSE]

}

Figure 1.2 shows a plot of the simulated data.
To fit the model with MARSS, we first need to specify the structure of the

MARSS model. First we set up the data. As usual, we use data starting at
t = 2 so that we can use t = 1 for Z1:

yt=Ns[,2:TT]

Notice the form of the Zt matrix in Equation 1.10. This can be rewritten as[
n1 n2

]
t ⊗
[

1 0
0 1

]
where ⊗ mean Kronecker product. This bit of R code will produce the Zt
matrix.

10 1 TMAR

0 5 10 15 20 25 30

0
5

10
15

20
25

30

N

ye
ar

Stage 1
Stage 2

Fig. 1.2. Simulated stage 1 and stage 2 numbers.

t=2

kronecker(t(Ns[,t-1,drop=FALSE]),diag(2))

Thus we can set up the Zt array as follows. Note that because we set y to
start at year 2, our Z1 uses year 1 data.

#observaton eqn. Specify Z, R, and A

Zt=array(0,dim=c(2,4,TT-1))

for(t in 1:(TT-1)) Zt[,,t]=kronecker(t(Ns[,t,drop=FALSE]),diag(2))

R and a are still zero:

R=A="zero"

The state equation parameters are set to match Equation 1.13. Notice there
is no B in that equation only u and Q.

B="zero"

U=matrix(list(0,"mean.s","mean.f","mean.phi"),4,1)

Q=matrix(list(0),4,4); diag(Q)=list(0,"q.s","q.f","q.phi")

The λ0 does not appear in the model, so we can set it to zero.

x0="zero"

V0="zero"

tinitx=0

Now we can fit the model.

tmar.model=list(Z=Zt, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0, tinitx=tinitx)

tmar.1=MARSS(yt, model=tmar.model)

1.3 TMAR: Multivariate time-varying model 11

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: Abstol convergence only no log-log convergence.

maxit (=500) reached before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: -97.84097

AIC: 207.6819 AICc: 209.329

Estimate

U.mean.s 0.241340

U.mean.f 1.009474

U.mean.phi 0.691654

Q.q.s 0.099833

Q.q.f 0.192049

Q.q.phi 0.000556

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the Q.q.phi parameter value has not converged.

Type MARSSinfo("convergence") for more info on this warning.

Compare the Leslie matrix used in the simulated data: to the estimated one:

LM

[,1] [,2]

[1,] 0.0 1.00

[2,] 0.2 0.87

to the estimated one which is in the u parameter.

vals=coef(tmar.1,type="matrix")$U

round(matrix(vals,2,2),2)

[,1] [,2]

[1,] 0.00 1.01

[2,] 0.24 0.69

1.3.2 Leslie matrix parameters changing as a random walk

Same as we did for λt , we now fit a model where fecundity and survival are
allowed to vary as a random walk. This model can be written:

12 1 TMAR
0
f
s
φ

t

=

0
s
f
φ

t−1

+

0

w f
ws
wφ

t

,wt ∼ MVN(0,Q)

Q =

0 0 0 0
0 q f 0 0
0 0 qs 0
0 0 0 qφ

(1.14)

Notice that the value of the Leslie matrix parameters at t = 0 does appear in
this model because it appears in the equation for the values at time t = 1.

We create some simulated fecundity and survival trajectories using a ran-
dom walk. The simulated trajectories are shown in Figure 1.3.

Q=diag(c(0,.05,.01,.1))

LMt=array(LM,dim=c(2,2,TT))

LMt[2,,]=log(LM[2,]/(1-LM[2,]))

for(t in 2:TT){

LMt[,,t]=LMt[,,t-1]+matrix(mvrnorm(1,rep(0,4),Q),2,2)

}

LMt[2,,]=exp(LMt[2,,])/(1+exp(LMt[2,,]))

These are then used to simulate age data.

Ns=matrix(0,2,TT)

Ns[,1]=c(30,20) #starting pop size

for(t in 2:TT){

Ns[,t]=LMt[,,t]%*%Ns[,t-1,drop=FALSE]

}

We set this up for MARSS as follows:

#observaton eqn. Specify Z, R, and A

Zt=array(0,dim=c(2,4,TT-1))

for(t in 2:TT){

Zt[,,t-1]=kronecker(t(Ns[,t-1,drop=FALSE]),diag(2))

}

R="zero"

A="zero"

#state eqn. Specify B, W, and U

B="identity"

U="zero"

x0=matrix(list(0),4,1)

x0[2:4,1]=c("s0","f0","phi0")

Q=matrix(list(0),4,4); diag(Q)=list(0,"q.s","q.f","q.phi")

V0="zero"

#specify the initial states

#we need to set x0 carefully so y_2=y_1*x0

1.3 TMAR: Multivariate time-varying model 13

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

t(
te

st
[2

:4
,]

)

s
f
phi

Fig. 1.3. Examples of fecundity and survival trajectories. Fecundity is a random
walk while the logit of the survivals is a random walk.

#it doesn't matter so much what we set the initial x0 to

#as long as it satisfies the y equation

inits=list(x0=matrix(c(0,Ns[1,2]/Ns[2,1],Ns[2,2]/Ns[2,1]),3,1))

Now we can fit the model. Notice that the first time-step of Ns was used
in Z, therefore we need to strip that first time step off the data we pass to
MARSS.

tmar2.model=list(Z=Zt, R=R, A=A, B=B, Q=Q, U=U, x0=x0, V0=V0)

tmp=MARSS(Ns[,2:TT], model=tmar2.model, inits=inits)

Success! abstol and log-log tests passed at 50 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 50 iterations.

14 1 TMAR

Log-likelihood: -220.7331

AIC: 453.4662 AICc: 455.1132

Estimate

Q.q.s 0.001451

Q.q.f 0.007663

Q.q.phi 0.000573

x0.s0 0.184430

x0.f0 1.087788

x0.phi0 0.843091

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The objective of this is to estimate the trajectories of fecundity and sur-
vivals, presumably so that we can do something like correlate them with a
covariate of interest. Let’s compare the estimates (Figure 1.5). Fecundity is
simply N2,t/N1,t−1, so that is perfectly estimated since we assumed no error in
our data. The survivals are not determined since there are two of them that
are adding together.

1.3 TMAR: Multivariate time-varying model 15

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

t(
te

st
[2

:4
, 2

:T
T

])

s
f
phi

Fig. 1.4. Estimates of fecundity and survival trajectories. Points are the true values
and lines are the estimates.

16 1 TMAR

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

t(
te

st
[2

:4
, 2

:T
T

])

s
f
phi

Fig. 1.5. Estimates of fecundity and survival trajectories. Points are the true values
and lines are the estimates.

	Time-varying MAR parameters
	Time-varying MAR models
	Univariate model
	TAR: t as white noise
	TAR: t as a random walk
	TAR: t as a mean-reverting random walk
	Covariates for

	TMAR: Multivariate time-varying model
	TMAR: Leslie matrix parameters as white noise
	Leslie matrix parameters changing as a random walk

