Using multivariate autoregressive
models to estimate interaction
strengths




Univariate and multivariate Gompertz

models

Morning: Univariate models and 2-spp models
» Estimating density dependence

Afternoon: Bigger multivariate models




The Gompertz model

univariate discrete time deterministic Gompertz model

n, =n,_, -explu+(-1)nn_]

* |b| <1 “negative” density-dependence
b =1, no density-dependence
Ib| > 1, “positive” density-dependence (blows up)

* The closer bis to 0, the stronger the density-
dependence (stronger the pull back to the mean).
If b=1, there is no “pull” back to the “mean” (the
mean is not in fact defined for this case).



Gompertz model written in log space

n, =n_ -explu+(b-1)inn_ ]
Taking the natural log of both sides
Inn, =Inn_, +u+(b-1)Inn_,
=Inn_,+u+blnn_, —Inn_,
=u+Dblnn_,

Substituting X, for In n,

Xt =Uu-+ bXt—l AR(1) minus the noise term




Examples of the Gompertz for different b
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Notice that when b=1, we get a straight line

The deterministic Gompertz egn is just

This line a linear (regression) model at b=1
ol e K FUFX X =T
] —e X, =U+7x
N, 1000000
o |1 X, =U+X =U+U+7T=U2+7

notice .|/

log Xy =U+X,=U+U24+7=U3+7
scale so

Time

This can be rewritten as

n is theintercept _
uis the slope Xt = +ut

This emphasizes the relationship between the AR(1) model and a
linear regression model, which is just a hidden state model where

b=1and q=0 (no noise)



Equilibrium for the deterministic

Gompertz model

X, =Uu+bx,_,
the model reaches equilibrium at t = o0, so we can write
X =Uu+bx_
And via some algebra, we arrive at:

X, =—— (providedb#1)
1-b

The equilibrium is a function of BOTH u and b.
This is rather unfortunate.



Add stochasticity (process error)

Adding stochasticity yields a univariate, lag-1
autoregressive or “AR(1)” process:

X, =U+bx_, +W, w, ~ N(0,52)

If |b| < 1, the process is “stationary”

If b =1, the process is a “random walk” & “non-
stationary”

Known as the discrete-time Ornstein-Uhlenbeck
process in physics but as Gompertz or stochastic
Gompertz model in population dynamics.



Example realizations
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Equilibrium for the stochastic Gompertz

process

It has a stationary distribution

Fig. 1- Ives et al. (2003)

probability distribution of X;ast — oo
given |b| < 1

Normally distributed with
mean w4, and variance v,



Properties of the stationary distribution

Assuming |b| < 1 (i.e. a stationary process)

U
mean H, = (pl‘OVidEd b+ l)

variance V, =0 /(1_ b2)



Basic features of the Gompertz process

* Mean reverting, aka density-dependent
e Stationary, so it fluctuates around a mean

e Point equilibrium, unlike say Lotka-Volterra interaction
models

e Can be seen as a locally linear approximation of other
types of density-dependent interaction models

“locally linear” is jargon for “only holds for sure if density
doesn’t change too much”.




Parameter estimation
Super easy in R

Open up R and follow after me
»lecture 5 example 0.R



So observation error is clearly a problem.

obs error = spurious density-dependence
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Are patterns of density dependence in the Global Population
Dynamics Database driven by uncertainty about population

abundance?

Abstract

Jomm Knpe® sad Peryy de Valpime  Demsity dependence in popuiation growsh rates is of immense
but s difficult to estimate. The Global Population Dynamics Daubase (GPDD), ane of e lrgest coliections
of papulasion time sesies avadable, has been extemsively wed © stuldy cros-mxa patems in density
dependence. A major difficulty with amessing density dependence from time sesies is tha uncerminty in
population abundance estimates can came swong bis in both tests and estimates of swength. We analyse 627
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of Cablornia, Berkeley, Berkeler,

importance to ecological theory and appliaation,

CA 3720, USA data ses in the GPDD wsing Gampertz popsation models and account for uncerninty via the Kalman filer
“Onmopomney: Fomle Resuits suggest that at least 4% of the time sesies display density dependence, but that it is weak and difficult
Monspetbedialey.ecs ® detect for 2 large fraction. When uncertsinty is ignored, magritade of and evidence for density dependence is
strong, Sustraing that uncerminty in abundance estimates qualitatively changes condusions shout density
dependence drawn from the GPDD.
Keywords
Density dependence, GPDD), chservasion error, fime series.
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R — against uncestaingy about populason size and has been shown to

Demity dependence in popubision growth mates & 3 fundamensl
concepe for ecological theory as well as for population management
Estimang density dependence in wild populations has, however,
proved challenging. Ideally, demsity dependence in growth rates
should be estimated direcdy from the effecs of density acting on the
traits contribusing to population growsh. Given cusrent progress in
statisiical methods for joindy analysing data on both populmion sae
and demographic traits (Besbeas o al 2005), and with longtesm
pop sadies in d aphic dita becoming gy
common, this approach holds 2 bright fture. However, he number
of such smdies is currently Emized and they only cover a rather mrrow
range of taxa. Long term time series on populiion abundance are
mare common and can be used © estimate density dependence in
population growth rates. Under this approach, density dependence i
defined m & genenal tendency of per capita growth rate to decrease
when popubiion sze & large and increase when it 5 small, and &
identified = a statistical pawem not Sed to any spediic bidogial
mechanism (Wolda & Demis 1993)

It was nowd ey that esémates and w38 of density dependence
based on regressing log mansformed curren: abserved popuation sac,
¥, on previs log tramsformed cbaerved populaion sze, 3,.,, are
semitive 1o uncertsinty in the observations (St-Amant 197 Kuno
1971; 16 1972 Sade 1977} Simiar concerns were sired about
estimates from fisheries models of stock recruitment data (Ludwag &
Walers 1981; Wakers & Ludwig 1981). Uncertsinty inflates the Type I
emor rake of s for density dependence (Shenk of al 1998) and tends
10 bias estimates towards s tronger density dependence if dpnamics are
under compersanry and towards weaker density dependence if
dynamics are overcompensatory (Benson 1973) Bulmer (1975)
devised two tests for density dependence nking the time sesies mnure
of the dats into sccount. One of those was designed to be robust

perform better than density dependence tests gnaning uncerminty in
estimates of populkison abundance (Shenk o & 1998). Simple
procedures to comect for effecs of uncerminty such as the SIMEX
method have been suggeseed (Solow 1998, Freckieton o ol 2006) but
typically require that the vasiance of the uncerminty shout population
s2e is known. A more direct pproach 1o account for unceninty i
provided by staw space models, fiest used for modeling populason
dynamics in the fisheries Ererature (eg. Mendeimoha 1988; Sullivan
1992). State space madels in these cases comsist of a model of 2
populaion dpnamicsl procems combined with 3 model of the
uncertainty in the abundance estimats, somesimes wmed observa.
tion, measurement or sampling error, and may be used to esémare the
vasance of this uncertainty as well a5 © fdter out its effecs
(de Valpine & Hastings 2002; Cader o ol 2003, Buckland # af 2004;
Dencis of o, 2006). Estimates desived from state space madels tend 1o
have smaller bias than estimates i gnoding uncerminty about population
abundance, but can alo have krge varinces (Knzpe 2008), and the
stastical properties of even smple sute space model estimame ase
nct fully wnderstood (Dendis o ol 2006 Lebrewa 2009).

The Giotal Populison Dynamics Databuse (GPDD), containing
over 5000 time srics on papulation abunduces obtained from
variow forms of papuksion surveys, has provided an opparturity for
ecdogists 1 explore populition dynamical pattems overa wide range
of axa (Inchausti & Halley 2001). Ansiyses using data in the GPDD
have focused an, eg, extnction rsks (Fagan #f 4l 2001; lnchausti &
Halley 2003; Brook er o 2006), papulaion cycles (Kendall or & 1998;
Murdoch er al 2002) and effects of weather (Kmpe & de Valpine
2011) bar, arguabily, the smdies stirring the most atention a5 well as
debate have addressed population regulation and density dependence.
These have explored patterns in the shape of demity dependence
{Sbly or &l 2005, Polans ky o &l 2009) and in the strength of regulation
and density dependence (Brook & Bradshaw 2006; Sy o af 2007;
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ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

Jonas Kxare'

Deparem

of Thearenaal Ecology, Ecology Buldmg, Lund University, SE 22362, Lund, Swaden

Abstrace. Estimation of demsity dependence from time seres data on population
abundance is hampered in the presence of ohservation or measurement errors. Filting
state-space modek has boen proposed a3 a solution that educes the biss in estimates of
density dependence caused by ignoring observation errors. Whik this & often true, I show
that, for specific parameter values, there are identifiability Bsues in the linesr state-space
maodel when the strength of densty dependence and the observation and process error
variances e all unknown. Usng simubstion 1o explore properies of the estimasiom, 1
illustrate that, unkss assumptions are imposed on the process or observation emror variances,
the variance of the estimator of density dependence vares critically with the strength of the
density dependence. Under compensatory dynamics, the stronger the density dependence the
maore dificult it & o estimate in the presence of observation errors. The identifiability Ssues
dimppear when density dependence is estimated from the ststespace model with the
observation error variance known 1o the comect value. Dinct estimates of observation
variance in shundance censuss could therefore prove helpful in estimating density dependence
but care needs 1o be taken 1o assess the uncenainty in variance estimates.

Key words: dawity depandence. state space models. time saries analysis

INTRODUCTION

Density dependence can be loosely defined as a
quantitative influence of population siwe on some life
history or popukstion trait of interest. The concept is of
central importance 10 populstion ecology simce it
determines both the Emiting and the short time behavior
of the dynamics of populations. Empirical estimates of
density dependence are therefore imporiant from a
scientific as well as from a management perspective.
A of density depend in the dynamics of
natural populstions has however proved 1o be chalkng-
ing (Dennis et al. 2006).

When relevant dats are available, effects of density
dependence can be directly linked to Efe history traits.
For instance, density dependence in recruitment (e.g,
Crespin et al 2006) and survival (e.g., Festa-Bianchet et
al. 2003) have been es
analyses and density dependence in fecundity has been
inferred from data on reproduction (e.g, Solbreck and
Tves 2007). Densty dependence in life history tmits
influen ces density depe ndence in population growth rate
(Lande et al 202 Tt can be argued that demsity
dependence in population growth is the most imponant
form of density dependence for determining long-term
bebavior of populations. However, since the link from
demographic traits to population change & almost never
known with good preckion, demsity dependence in

imated by mark-recaptune
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population growth rate & not esily inferred from Efe
history data even if the effects of density dependence on
several Efe history traits are well known. Time series
analysis of popubition abundance data provides an
alternative or complementary method that ideally could
serve as a more direct way of estimating density
dependence in population growth rate.

Estimates of density dependence must rely on
mesures of population densty that are wsually difficult
to oblsn with precision (Freckleton et al. 2006). This
problem is particularly rekvant o estimates of density
dependence in growth rate derived from time series dala
on population gz o that both the dependent and the
independent variable are measured with uncenainty.
Introducing observation error to dynamical data chang.
e s dynamical structure (Dennis ef al 2006) and
estimators relating to the dynamics of the data that do
not account for obsenation ermom ae therfone often
bimed. Specifically, tests and estmators of density
dependence based on time series data are known 1o be
bizsed if observation errors are present but ignored for
both dirct (Kuno 1971, Waliers and Ludwig 1981,
Shenk et . 1998, Freckleton et al. 2006) and delayed
(Solow 001 density dependence. An appealing method
for overcoming this difficulty is provided by the state-
space framework (Harwey 1990), 2 general term for
statistical modek of observations of hidden state
variables that are dynamically linked through time.
For time series data on population abundance, state-
space models can be wsed for explicit modeling of both
the observation and the population dynamical processs
(Stenseth et al. 2003, Jamieson and Brooks 2004)
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Parameter estimation accounting for obs error

Super easy in R...

Open up R and follow after me

»lecture 5 example 1.R estimation technically easy..
»Lecture 5 example 2.R replication

»Lecture 5 example 3.R ML on the edge



Estimating R is not so easy, but

replication helps A LOT

Ecological Monographs, 76(3), 2006, pp. 323-341
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ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
AND OBSERVATION ERROR
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ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

1
Jonas KNAPE

Department of Theoretical Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden

Abstract.  Estimation of density dependence from time series data on population
abundance is hampered in the presence of observation or measurement errors. Fitting
state-space models has been proposed as a solution that reduces the bias in estimates of
density dependence caused by ignoring observation errors. While this is often true, I show
that, for specific parameter values, there are identifiability issues in the linear state-space

mmadal srthan tha cteanath AF damcitsr damandanan and tha Ahcamratian and ceanacs Aceas




All the previous examples were NON-

stationary

Open up R and follow after me
»lecture 5 example 0.R

> plot(x)

— o0
© o
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Estimation much easier if you can assume that your

data are a sample from the stochastic equilibrium

Process has
reached
equilibrium




How to estimate b when you are willing to

assume the data come from stoc. equil.:

Ecological Monographs, 76(3), 2006, pp. 323-341
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ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
AND OBSERVATION ERROR
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Abstract.  We describe a discrete-time, stochastic population model with density depend-
ence, environmental-type process noise, and lognormal observation or sampling error. The
model. a stochastic version of the Gompertz model. can be transformed into a linear Gaussian
state-space model (Kalman filter) for convenient fitting to time series data. The model has a

Idea #1 Impose the constraint that

W(t)=(y(1)-y(t-1)) and

W(’r) W(t-1)
Have the variance-covariance structure of a stochastic
Gompertz observed with error.

« Compute Q from the total sample variance and the
estimate of b



How to estimate b when you are willing to

assume the data come from stoc. equil.?

Idea #2 If you subtract E(x(t)) then U=0
Use mean(data) as E(x(%))

Has the added value of removing "a" too!
Used in Ives et al 2003

Lecture_5_example_4.R



Take home messages

U and B are confounded. Likelihood is banana-shaped,
so we need to constrain u

de-mean the data

set u=o0

set tinitx=1

What happens when we add observation error?
Estimation is more difficult.
Replication will help us estimate R vs Q



2-species: Predator-Prey

Moose X —U +b _1+b

+b

m—m m t WwW—m W t-1

Wolf X, = U, +Db

W—oW Wt -1 m—ow mt—l




MAR(1): x,=Bx,. + U+ w,

“spp”” abundance

’_l_\

Xm,t bm—>m bw—>m Xm,t—l um Wm
= + +
Xw,t bm—>w bw—>w Xw,t—l uw Ww
. J
Y

B = interaction matrix

Process variation
MVN(O,Q)



Meaning of the B matrix

Inter-specific effects
(can be set to zero)

)

Inter-specific effects Intra-specific effects

(can be set to zero) effect of spp i on itself,
aka density-dependence




Computer lab #2: moose and wolf




Adding covariates

covariates

|:Xm,t:| . |:bm—>m bW—>m :||:Xm,t1:| n |:um:| n |:C1—>m C2—>m C3—>m:|
Xw,t bm—>w bw—>w Xw,t—l uw C1—>2 C2—>w C3—>W
\// - —

B = interaction matrix covariate effect

!_\O

O O
N
+
1

w
—

Process variation not from
covariates (“unexplained”)



Observation error causes

» Spurious density-dependence, i.e. apparent stronger effect of
self on self

» Spuriously low species interaction strengths, i.e. apparent
lower effect of other on self

Inter-specific effects

(go to 0)

)

Intra-specific effects
gotoo




R code #3: Lotka-Volterra predator-prey
iInteractions




Simple 2-species system

Predator & Prey

Data are simulated using a Lotka-Volterra
model with density-dependence in the
herbivore- easy to change interaction strength

_ H = herbivore sp
dH/dt = P = predator sp.

b = herbivore birth rate

bH(1 -H/K) -aHP+ & k=nerivore carrying-

capacity
dP/dt = a = per capita attack rate
e = conversion efficiency
e(aPH) - sP + ¢ (consumed prey turning

iInto new predators)
s = death rate for predators



This model can display a variety of dynamics

—e— Herbivore
—=— Predator

s

RO SIR S CH C S

—e— Herbivore
—=— Predator




Estimate strength of density-dependence

and interaction strength using MARSS

 Lecture_5_example_LV.R
« change conversion efficiency of
predator
* Lecture_5_example_LV_2.R
» add observation error
* Lecture_5_example_LV_3.R
e covariate affects K of herbivore
* Lecture_5_example_LV_4.R
 covariate affects conversion
efficiency of predator



