Using multivariate autoregressive
models to estimate interaction
strengths




Univariate and multivariate Gompertz

models

Morning: Univariate models and 2-spp models
» Estimating density dependence

Afternoon: Bigger multivariate models
» Estimating species interactions N




The Gompertz model

univariate discrete time deterministic Gompertz model

n,=n,_, -explu+(b-1)nn_,|

* |b] <1 “negative” density-dependence
b =1, no density-dependence
Ib| > 1, “positive” density-dependence (blows up)

e The closer bis to 0, the stronger the density-
dependence (stronger the pull back to the mean).
If b=1, there is no “pull” back to the “mean” (the
mean is not in fact defined for this case).



Gompertz model written in log space

n, =n,_, -explu+(b-1)nn_,|
Taking the natural log of both sides
Inn, =Inn_ +u+(b—-1)lnn,_,
=Inn_, +u+blnn_, —Inn_,
=U+Dblnn_,

Substituting X, for In n;

Xt = U+ bxt—l AR(1) minus the noise term




Examples of the Gompertz for different b
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Notice that when b=1, we get a straight line

The deterministic Gompertz egn is just

This line a linear (regression) model at b=1
- / o X =UHX L, X, =7
—0<b<1
o —+ X, =U+7
- X, =U+X =U+U+7=U2+7

notice .|/

log f X3:u+X2:u+U2+7Z'=U3—I—7z'
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Time

This can be rewritten as

n isthe intercept X, =T+ ut

uis the slope

This emphasizes the relationship between the AR(1) model and a
linear regression model, which is just a hidden state model where
b=1 and g=0 (no noise)



Equilibrium for the deterministic

Gompertz model

X, =U+DbXx_,
the model reaches equilibrium at t = o0, so we can write
X, =U+DbX_
And via some algebra, we arrive at:

X, =—— (providedb#1)
1-b

The equilibrium is a function of BOTH u and b.
This is rather unfortunate.



Add stochasticity (process error)

Adding stochasticity yields a univariate, lag-1
autoregressive or “AR(1)” process:

X, =U+bXx_ +W, Wt~N(O,0'2)

If |b| < 1, the process is “stationary”

If b =1, the process is a “random walk” & “non-
stationary”

Known as the discrete-time Ornstein-Uhlenbeck
process in physics but as Gompertz or stochastic
Gompertz model in population dynamics.



Example realizations
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Equilibrium for the stochastic Gompertz

process

It has a stationary distribution

Fig. 1- Ives et al. (2003)

probability distribution of X,ast — oo
given |b| < 1

Normally distributed with
mean /£, and variance v,



Properties of the stationary distribution

Assuming |b| < 1 (i.e. a stationary process)

U
mean H, = (provided b # 1)

variance V, =0 /(1 o bz)



Basic features of the Gompertz process

e Mean reverting, aka density-dependent
e Stationary, so it fluctuates around a mean

e Point equilibrium, unlike say Lotka-Volterra interaction
models

e Can be seen as a locally linear approximation of other
types of density-dependent interaction models

“locally linear” is jargon for “only holds for sure if density
doesn’t change too much”.




Parameter estimation
Super easy in R

Open up R and follow after me
»lecture 5 example 0.R



So observation error is clearly a problem.

obs error = spurious density-dependence
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ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

LETTER

Are patterns of density dependence in the Global Population
Dynamics Database driven by uncertainty about population
abundance?

Jomas Kare'
Department of Thwarecal Ecology, Ecology Buldmg, Lund University, SE-22362, Lund, Sweden

Abstract.  Estimation of density dependence from time series daia on population

Abstract abundance is hampered in the presence of observation or measurement erroms. Fitting
Jonm Knape® and Perry de Valpine  Density dependence in population growth rates is of immense importance to ecological theory and application, stale-space model has been proposed as a solution that reduces the bias in estimates of
Deparmmant of Exvrormental but is difficalt to estimate. The Global Population Dynamics Datibase (GPDD), one of the krgest collections density dependence caused by ignoring observation errors. Whilk this & often true, T show
Science, Palicy and Managemen’. of populason tme senes avadable, has been extemsively wed © stady crom maxa patems . deasty that, for specific parameter values, there are identifiability Bsues in the linewr state-space
137 Multhal Had 8114, Unersly  dependence. A major difficulty with assessing density dependence from time series & thar uncerminty in model when the strength of densty dependence and the observation and proces eror
of Caiornia, Berkeley. Berkeley. popuation abundance estimates can cause swong bizs in both tests and estimates of swength. We analyse 627 variances are all unknown. Usng simulation to explore propertes of the estimatons, |

CASEM Ush X data sen in the GPDD wsing Gampertz population madels and account for uncerninty via the Kalman filter. illusteste that, unkss assumptions are imposed on the process or observation emor variance,
'fnmm.:-d' Results suggest that at least 4% of the time series display density dependence, but that it is weak and difficult the variance of the estimator of density dependence varies critically with the strength of the
[rS—— . P srade of i four densi o . i . ai
® detect for 2 lurge fraction. When g ignored, mag and evidence 7 dependence i density dependence. Under compe nsatory dynamies, the stronger the density dependence the
"“‘Ed:"‘::'lt that " (‘PDD eiimaies haages dhoot density more difficult it & to estimate in the presence of observation errors. The identifiability isues
dependence dawn from the Gl dissppear when density dependence is estimated from the state-space model with the
e observation error variance known 1o the comect value. Dinct estimates of observation
” . . variance in sbundance censuses coukd therefore prove helpful in estimating density dependence
Dessity dependence, GPDD, cherrvadion emor, e series. but care needs to be taken 1o assess the uncentainty in varfance estimates
by Letter Q011) Key words:  demsuty dependance. mare-space models. rove serses amalysis
against uncestaingy about popubiton sze and has been shown to INTRODUCTION population growth rate & not esily inferred from Efe
INTRODUCTION

Demity dependence in populiion growth rates & a fundamenal
concepe for ecological theory as well a3 for population management.
Estimagng densty dependence in wild populations has, however,
proved challenging. Idealy, density dependence in growth rares
should be estimated directy from the effect of density acting on the
traits coatribusing to population growh. Given cument progress in
statisical methods for joindy analysing data on both population sze

and demogeaphic traits (Besbeas o al 2005), and with longterm
popuation sudies involving demagrphic data becoming increasingly
common, this approach hakds a bright ftue. However, the number
of such stdies s currently Emied and they only cover a rather mow
range of taxa. Long temm time series on populzion abundance are
mare common and @n be used B estimate density dependence in
popsiation growdh rates. Under this approach, density dependence is
defined = 2 general tendency of per capita groweh rates to decsease
when populition size is lage and inarese when it is small, and is
identified a5 a statistical pattern not Sed to any spedific bidlogial
mechanism (Wolda & Deanis 1993)

It was nowed ady thit esimates and ®s8 of density dependence
based on regressing log wansfoermed cument dbserved population size,
75 on previus log transformed cbserved population sze, ., are
semitive to uncemnty in the observations (St-Amant 197 Kuno
197%; 18 1972 Sade 1977) Simias concerss wese aired about
estmans from fisheries models of sock-recruitment dara (Ludwig &
Walwers 1981; Wakers & Ludwig 1981}, Uncertainry inflaces the Type I
error nax of w3m ﬁwd«lwdwdmu (Shenk ot al 1998) and tends
1o bias esti density dependence if dynamics are
under-compemsatory aad towards weaker density dependence if
dynamics ase overcompemsmory (Benson 1973). Bulmer (1975)
devised two tests for density dependence mking the time series nature
of the data into account. One of those was designed to be robust

perform better than density dependence tests ignoring uncerminty in
estimates of popubon abundance (Shenk o o 1998). Simple
procedures to correct for effecs of uncerminty such as he SIMEX
method have been suggested [Solow 1998; Freckleton #f al 2006) but
typically require that the variance of the uncerninty abou population
s2e is koown. A more direct pproach to account for uacertainty i
provided by stae space models, first used for madeling population
dynamics in the fisheries Bteratuse (g Mendelssoha 1988, Sullan
1992). State space models in these cases comsist of 2 model of 2
populion dynamicil process combined with 1 model of the
uncertinty in the abundance estimates, somesmes ermed observa
ton, messwement or sampling error, and may be used to estimate the
vamance of this uncertainty as well as o filter out its effecs
(de Valpine & Hastings 2002; Calder or ol 2003, Buckdand & .af 2004;
Deacis or . 2006). Estimates decived from stare space models tend to
h Ber bias thun esti g inty about populaion
abundance, but can also have lrge varances (Knape 2008), and the
staiistical properties of even smple stute space maded estimatorn are
nat fully undesstood (Deanis o al 200§ Lebreton 2009

The Giotul Populision Dynamics Database (GPDD), containing
over 5000 fime sesies on population abundances obtained from
various forms of populasion surveys, has provided an opparmusity for
ecdogists © explare population dynamical pattems over a wide mnge
of axa (lnchausti & Halley 2001). Anslyses using data in the GPDD
have focused an, g, extinction sisks (Fagan #f al 2001; Inchausti &
Halley 2003; Brook o &l 2006), populasion cycles (Kendall or ol 1998;
Murdodh o a 2002) and effects of weaher (Kmpe & de Valpine
2011) but, asguabiy, the smdies stirring the most artention = well a3
debate have addsessed population regukation and density dependence.
These have explored patterns in the shape of demsity dependence
(Sibly ar & 2005; Polanskey # &l 2109 and iin the strength of regulation
and density dependence (Brook & Beadshaw 2006 Sibly e al 2007;

© 2011 Bt lwell Publishing Lad/CNRS
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‘Reports

Density dependence can be loosely defined a5 a
quantitative influence of population st on some life
history or population trait of interest. The concept is of
central imporiance 1o populstion ecology simee it
determines both the Emiting and the short time behavior
of the dynamics of populations. Empirical estimates of
density dependence are therefore important from a
scientific as well a5 from 3 mansgement pespective.
Asses of density d in the dynamics of
natural populations has however proved to be chalkng-
ing (Dennis et al. 2006)

When relevant data are available, effects of density
dependence can be directly linked 10 Efe history traits.
For instance, dengty dependence in recruitment (e.g,
Crespin et al 2006) and survival (e.g., Festa-Bianchet et
al. 2003) have been estimated by mark-—recapiune
analyses and density dependence in fecundity has been
inferred from daia on reproduction (e.g., Solbreck and
Ives 2007). Density dependence in life history traits
influen ces density dependence in population gowth rate
(Lande et al 202, & can be argued thai density
dependence in population growth is the most imponant
form of density dependence for determining long-term
behavior of populations. However, since the Enk from
demographic traits 1o populition change is almost never
known with good precision, demsity dependence in

Mm\lcnrz recaved 12 January 2008; revised 2 June 2008;
accepted 12 Jane 2003. Carresponding Editar- M. Lavine
! E-mail: jonas knape@teorekol Ju.se

history data even if the effects of density dependence on
several ife history traits are well known. Time seris
analysis of popultion abundance data provides an
alternative or complementary method that ideally could
serve a8 a more direct way of estimating densty
dependence in population growth rate.

Estimates of density dependence must rely on
measures of population density that are usually difficult
to oblain with preciion (Freckleton et al. 2006). This
problem is particularly relevant to estimates of density
dependence in growth rate derived from time series data
on population sze in that both the dependent and the
independent variabk ame measured with uncenainty.
Introducing observation error to dynamical data
s its dynamical structure (Dennds et al 2006) and
estimators relating 1o the dynamics of the data that do
ot account for observation erors are therfore often
bissed Specifically, tests and estimators of density
dependence based on time series data ame known 1o be
hized if observation errors are present but ignored for
both dirct (Kuno 1971, Waliers and Ludwig 1981,
Shenk et al. 1998, Freckleton et al. 2006) and delayed
(Solow X01) density dependence. An appealing method
for overcoming this difficulty is provided by the state
space framework (Harwy 1990, 2 geoeral term for
statistical modek of observations of hidden state
variables that are dynamically linked through time
For time series data on population abundance, state-
space models can be used for explicit modeling of both
the observation and the population dynamical processes
(Stenseth et al. 2003, Jamieson and Brooks 2004).
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Parameter estimation accounting for obs error

Super easy in R...

Open up R and follow after me
»lecture 5 example 1.R estimation technically easy..
»Lecture 5 example 2.R replication
»Lecture 5 example 3.R ML on the edge



Estimating R is not so easy, but

replication helps A LOT

Ecological Monographs, 76(3), 2006, pp. 323-341
© 2006 by the the Ecological Society of America

ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
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ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

1
Jonas KNAPE

Department of Theoretical Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden

Abstract.  Estimation of density dependence from time series data on population
abundance is hampered in the presence of observation or measurement errors. Fitting
state-space models has been proposed as a solution that reduces the bias in estimates of
density dependence caused by ignoring observation errors. While this is often true, I show
that, for specific parameter values, there are identifiability issues in the linear state-space
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All the previous examples were NON-

stationary

Open up R and follow after me

»lecture 5 example 0.R
> plot(x)

OOO

Index



Estimation much easier if you can assume that your

data are a sample from the stochastic equilibrium

Process has
reached
equilibrium

Density




How to estimate b when you are willing to

assume the data come from stoc. equil.:

Ecological Monographs, 76(3), 2006, pp. 323-341
© 2006 by the the Ecological Society of America

ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
AND OBSERVATION ERROR

4 ~ 4
Brian Dennis,'® Josi: MiGUEL Ponciano,” Sustast R. LELE,” MARK L. Taper,* AND DAvVID F. STAPLES

"Department of Fish and Wildlife Resources and Department of Statistics, University of Idaho, Moscow, Idaho 83844 USA
*Initiative for Bioinformatics and Evolutionary Studies (IBEST), Department of Mathematics, University of Idaho,
Moscow, Idaho 83844 USA
3Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1 Canada
A Department of Ecology, Montana State University, Bozeman, Montana 59717 USA

Abstract. We describe a discrete-time, stochastic population model with density depend-
ence, environmental-type process noise, and lognormal observation or sampling error. The
model. a stochastic version of the Gompertz model. can be transformed into a linear Gaussian
state-space model (Kalman filter) for convenient fitting to time series data. The model has a

Idea #1 Impose the constraint that

W(H)=(y(t)-y(t-1)) and

W('r) W(t-1)
Have the variance-covariance structure of a stochastic
Gompertz observed with error.

« Compute Q from the total sample variance and the
estimate of b



How to estimate b when you are willing to

assume the data come from stoc. equil.?

Idea #2 If you subtract E(x(t)) then U=0
Use mean(data) as E(x(%))

Has the added value of removing "a" too!
Used in Ives et al 2003

Lecture_5_example_4.R



2-species: Predator-Prey

+b
+b

Moose X =U, + b

m—m mtl W—m th

Wolf X, =U, +Db

W—W th m—w mtl




MAR(1): x,=Bx,. + U+ w,

“spp” abundance

‘_l_\

Xm,t _ |:bm—>m bw—>m:| Xm,t—l n |:um:| 4 |:Wm:|
XW,t bm—>w bW—>W XW,t—l uW WW
g J
Y

B = interaction matrix

Process variation
MVN(0,Q)



Meaning of the B matrix

Inter-specific effects
(can be set to zero)

)

Inter-specific effects Intra-specific effects
(can be set to zero) effect of spp i on itself,
aka density-dependence




Computer lab #2: moose and wolf




Observation error causes

» Spurious density-dependence, i.e. apparent stronger effect of
self on self

» Spuriously low species interaction strengths, i.e. apparent
lower effect of other on self

Inter-specific effects

(go to 0)

:

Intra-specific effects
gotoo




Parameter estimation

Easy with MARSS

BUT we need to get rid of u and set tinitx=1 (the estimated initial x is at t=1 not t=0)!

Open up R and follow after me
» lecture 5 example 2.R
B=*‘unconstrained”

What’s going on?
Remember lab #1? U and B are confounded. Likelihood is banana-shaped, so we need to
constrain u

de-mean the data

set u=0

set tinitx=1

lecture 5 example 3.R
what happens when we add observation error?
bad things happen.



Adding covariates

covariates

|:Xm,t:| . |:bm—>m bW—>m i||:xm,t1:| 4 |:um :| 4 |:C1—>m C2—>m C3—>m:|
Xw,t bm—>w bw—>w Xw,t—l uw C1—>2 CZ—)W C3—>W
\/ \ v )

B = interaction matrix covariate effect

Process variation not from
covariates (“unexplained”’)



Model diagnostics

Once selected, a MAR(1) model should be scrutinized

Useful diagnostics include:
1) Areresiduals temporally autocorrelated (via ACF and PACF)?

2) Are mean or variance of the residuals correlated with any variates or
covariates (via X-Y plots)?

3) Are residuals normally distributed (via normal probability plots)?

4) What proportion of the variance is explained by the model (via
conditional R?)? Remember Q is the ‘unexplained’ variance in this case.

Note: conditional R measures the proportion of change in log density from
timet-1tot



