
Derivation of the EM algorithm for constrained

and unconstrained multivariate autoregressive

state-space (MARSS) models

DRAFT

Elizabeth Eli Holmes
Northwest Fisheries Science Center, NOAA Fisheries

2725 Montlake Blvd E., Seattle, WA 98112
eli.holmes@noaa.gov

http://faculty.washington.edu/eeholmes

October 18, 2011

Contents

1 Overview 2

2 The EM algorithm 6

3 The unconstrained update equations 10

4 The constrained update equations 24

5 Computing the expectations in the update equations 39

6 Degenerate variance modifications 46

7 Implementation comments 55

8 MARSS R package 57

citation: Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and unconstrained multivariate autore-

gressive state-space (MARSS) models. Unpublished report. Northwest Fisheries Science Center, NOAA Fisheries,

Seattle, WA, USA.

1

1 Overview

EM algorithms extend likelihood estimation to cases with hidden states, such
as when observations are corrupted and the true population size is unobserved.
EM algorithms are widely used in engineering and computer science applica-
tions. The reader is referred to McLachlan and Krishnan (2008) for general
background on EM algorithms and to Harvey (1989) for a discussion of EM
algorithms for time-series data. Borman (2009) has a nice tutorial on the EM
algorithm. Coding an EM algorithm is not as involved as the following this
report might suggest. In most texts, the majority of the steps shown in this
technical report would be subsumed under the line “the equations follow di-
rectly from the likelihood...”. This technical report lays out in detail all of the
steps between the likelihood and the EM update equations.

I show first the derivation of the EM algorithm for the unconstrained1

MARSS model. This EM algorithm was derived by Shumway and Stoffer (1982),
but my derivation is in some ways more similar to Ghahramani et al’s (Ghahra-
mani and Hinton, 1996; Roweis and Ghahramani, 1999) slightly different pre-
sentation. One difference in my presentation and these previous presentations
is that I treat the data as a random variable throughout; this means that there
are no “special” update equations for the missing values case. I then extend
the derivation to the case of a constrained MARSS model where there are fixed
and shared elements in the parameter matrices and to the case of a degenerate
MARSS model where some processes in the model are deterministic rather than
stochastic. An example of a shared value would be a shared drift term (u) across
all the random walk processes in a MARSS model. See also Wu et al. (1996) and
Zuur et al. (2003) for other examples of the EM algorithm for different classes
of constrained MARSS models.

One issue that I do not cover is “identifiability”, i.e. does a unique solution
exist. For a given MARSS model, you will need to fix some of the parameter
elements in order to produce a model with one solution. How to do that depends
on how you are using the MARSS model and what specific model you are using.
If you are lucky, someone in your field is using a similar type of MARSS model
and has already worked out how to constrain the model to ensure identifiability.

Whenever one is working with MARSS models, one should be cognizant that
misspecification of the prior on the initial hidden states (xxx0 or xxx1) can have
catastrophic and difficult to detect effects on your MLE estimates in MARSS
models. There is often no sign that something is amiss, except that something
seems odd about your parameter estimates. There has been much work on
how to avoid these initial conditions effects (see especially literature on VAR
state-space models in the economics literature). In our experience, the trouble
occurs when the prior on the initial states is inconsistent with the distribution
of the initial states that is implied by the MLE model. This often happens
when the model implies a specific covariance structure on the initial states. But
since you do not know the MLE parameters, you do not know this covariance

1“unconstrained” means that each element in the parameter matrix is estimated and no
elements are fixed or shared.

2

structure. Using a diffuse prior does not help since your diffuse prior still has
some covariance structure (often independence is being imposed). As mentioned
above, often it is very difficult to detect that there is a problem. There are MLE
estimates; it is just that these estimates are influenced in a bad way by your
prior. One way to detect it is to compare estimates from the EM algorithm
versus a Newton-method. If the estimates are quite different, this suggests a
prior specification problem because sometimes one or the other algorithm is
able/unable to find the MLE when the prior is inconsistent. In some ways the
EM algorithm is less sensitive to the prior because it uses the smoothed states
in the maximization step. The smoothed states are conditioned on all the data.
However, if the prior is inconsistent with the model, the EM algorithm will not
(cannot) find the MLE. It is very possible however that it will find parameter
estimates that are closer to what you intend (estimates uninfluenced by the
prior), but they will not be MLEs. The final section of this report discusses
some practical ways to detect the prior problems and to correct or circumvent
them.

1.1 The MARSS model

The linear MARSS model with a stochastic initial state2 is

xxxt = Bxxxt−1 + u + wt, where wt ∼ MVN(0,Q) (1a)
yyyt = Zxxxt + a + vt, where vt ∼ MVN(0,R) (1b)

xxx0 ∼ MVN(ξ,Λ) (1c)

The yyy equation is called the observation process, and yyyt is a n× 1 vector. The
xxx equation is called the state or process equation, and xxxt is a m × 1 vector.
The equation for xxx describes a multivariate autoregressive process (also called a
random walk or Markov process). The initial state can either defined at t = 0,
as is done in equation 1, or at t = 1. When presenting the MARSS model, I use
t = 0 but the derivations will show the EM algorithm for both cases. Q and R
are variance-covariance matrices that specify the stochasticity in the observation
and state equations.

This report describes the derivation of an EM algorithm to solve MARSS
models, where linear constraints of the form βi + βa,ia+ βb,ib+ . . . are placed
on the elements in the MARSS parameter matrices. This covers the majority of
MARSS models used in the literature. Here is an example of a MARSS model

2‘Stochastic’ means the initial state has a distribution rather than a fixed value. Because
the process must start somewhere, one needs to specify the initial state as either a distribution
or as a parameter. In equation 1, I show the initial state specified as a distribution. However,
the derivation will also discuss the case where the initial state is specified as an unknown fixed
parameter.

3

with linear constraints:[
x1

x2

]
t

=
[
a 0
0 2a

] [
x1

x2

]
t−1

+
[
w1

w2

]
t

,

[
w1

w2

]
t

∼MVN

([
0.1

u+ 0.1

]
,

[
q11 q12

q21 q22

])
y1

y2

y3

t

=

 c 3c+ 2d+ 1
c d

c+ e+ 2 e

[x1

x2

]
t

+

v1

v2

v3

t

,

v1

v2

v3

t

∼MVN

a1

a2

0

 ,
r 0 0

0 2r 0
0 0 4r

[
x1

x2

]
0

∼MVN

([
π
π

]
,

[
1 0
0 1

])
Linear constraints mean that elements of a matrix may be fixed to a specific
numerical value or specified as a linear combination of values (which can be
shared within a matrix but not shared between matrices).

In the MARSS model, xxx and yyy equations describe two stochastic processes.
By tradition, one conditions on observations of yyy, and xxx is treated as completely
hidden, hence the name ‘hidden Markov process’ of which a MARSS model is
a special type. However, you could condition on (partial) observations of xxx
and treat yyy as a (partially) hidden process—with as usual proper constraints
to ensure identifiability. Nonetheless in this report, I follow tradition and treat
xxx as hidden and yyy as (partially) observed. If xxx is partially observed then the
update equations stay the same but the expectations shown in section 5 would
be computed conditioned on the partially observed xxx.

1.2 The joint log-likelihood function

Denote the set of all y’s and x’s from t = 1 to T by yyy and xxx. The joint log-
likelihood3 of yyy and xxx can then be written then as follows, whereXXXt denotes the
random variable and xxxt is a realization from that random variable (and similarly
for YYY t):4

f(yyy,xxx) = f(yyy|XXX = xxx)f(xxx), (2)

3This is not the log likelihood output by the Kalman filter. The log likelihood output by
the Kalman filter is the log L(yyy; Θ) (notice xxx does not appear), which is known as the marginal
log likelihood.

4To alleviate clutter, I have left off subscripts on the f ’s. To emphasize that the f ’s
represent different density functions, one would often use a subscript showing what parameters
are in the functions, i.e. f(xxxt|XXXt−1 = xxxt−1) becomes fB,u,Q(xxxt|XXXt−1 = xxxt−1).

4

where

f(xxx) = f(xxx0)
T∏
t=1

f(xxxt|XXXt−1
1 = xxxt−1

1)

f(yyy|XXX = xxx) =
T∏
t=1

f(yyyt|XXX = xxx)

(3)

Thus,

f(yyy,xxx) =
T∏
t=1

f(yyyt|XXX = xxx)× f(xxx0)
T∏
t=1

f(xxxt|XXXt−1
1 = xxxt−1

1)

=
T∏
t=1

f(yyyt|XXXt = xxxt)× f(xxx0)
T∏
t=1

f(xxxt|XXXt−1 = xxxt−1).

(4)

Here xxxt2t1 denotes the set of xxxt from t = t1 to t = t2 (and thus xxx is shorthand for
xxxT1). The third line follows because conditioned on xxx, the yyyt’s are independent
of each other (because the vt are independent of each other). In the last line,
xxxt−1

1 becomes xxxt−1 from the Markov property of the equation for xxxt (equation
1a), and xxx becomes xxxt because yyyt depends only on xxxt (equation 1b).

Since (XXXt|XXXt−1 = xxxt−1) is multivariate normal and (YYY t|XXXt = xxxt) is multi-
variate normal (equation 1), we can write down the joint log-likelihood function
using the likelihood function for a multivariate normal distribution (Johnson
and Wichern, 2007, sec. 4.3).

log L(yyy,xxx; Θ) = −
T∑
1

1
2

(yyyt − Zxxxt − a)>R−1(yyyt − Zxxxt − a)−
T∑
1

1
2

log |R|

−
T∑
1

1
2

(xxxt −Bxxxt−1 − u)>Q−1(xxxt −Bxxxt−1 − u)−
T∑
1

1
2

log |Q|

− 1
2

(xxx0 − ξ)>Λ−1(xxx0 − ξ)− 1
2

log |Λ| − n

2
log 2π

(5)

n is the number of data points. This is the same as equation 6.64 in Shumway
and Stoffer (2006). The above equation is for the case where xxx0 is stochastic (has
a known distribution). However, if we instead treat xxx0 as fixed but unknown
(section 3.4.4 in Harvey, 1989), it is then a parameter and there is no Λ. The
likelihood then is slightly different:

log L(yyy,xxx; Θ) = −
T∑
1

1
2

(yyyt − Zxxxt − a)>R−1(yyyt − Zxxxt − a)−
T∑
1

1
2

log |R|

−
T∑
1

1
2

(xxxt −Bxxxt−1 − u)>Q−1(xxxt −Bxxxt−1 − u)−
T∑
1

1
2

log |Q|

xxx0 ≡ ξ

(6)

5

Note that in this case, xxx0 is no longer a realization of a random variableXXX0; it is
a fixed (but unknown) parameter. Equation 6 is written as if all the Λ elements
are 0 in order to remove clutter, however the MARSS package does not require
that all Λ are 0. You can fix some x0 in xxx0 and let others have a prior, but you
need to make sure the model actually makes sense.

If R is constant through time, then
∑T

1
1
2 log |R| in the likelihood equation

reduces to T
2 log |R|, however sometimes one needs to includes time-dependent

weighting on R5. The same applies to
∑T

1
1
2 log |Q|.

All bolded elements are column vectors (lower case) and matrices (upper
case). A> is the transpose of matrix A, A−1 is the inverse of A, and |A| is the
determinant of A. Parameters are non-italic while elements that are slanted are
realizations of a random variable (xxx and yyy are slated)6

1.3 Missing values

In Shumway and Stoffer and other presentations of the EM algorithm for MARSS
models (Shumway and Stoffer, 2006; Zuur et al., 2003), the missing values case
is treated separately from the non-missing values case. In these derivations, a
series of modifications are given for the EM update equations when there are
missing values. In my derivation, I present the missing values treatment differ-
ently, and there is only one set of update equations and these equations apply in
both the missing values and non-missing values cases. My derivation does this
by keeping E[YYY t|data] and E[YYY tXXX

>
t |data] in the update equations (much like

E[XXXt|data] is kept in the equations) while Shumway and Stoffer replace these
expectations involving YYY t by their values, which depend on whether or not the
data are a complete observation of YYY t with no missing values. Section 5 shows
how to compute the expectations involving YYY t when the data are an incomplete
observation of YYY t.

2 The EM algorithm

The EM algorithm cycles iteratively between an expectation step (the inte-
gration in the equation) followed by a maximization step (the arg max in the
equation):

Θj+1 = arg max
Θ

∫
xxx

∫
yyy

log L(xxx,yyy; Θ)f(xxx,yyy|YYY (1) = yyy(1),Θj)dxxxdyyy (7)

YYY (1) indicates those YYY that have an observation and yyy(1) are the actual obser-
vations. Note that Θ and Θj are different. If Θ consists of multiple parameters,

5If for example, one wanted to include a temporally dependent weighting on R replace
|R| with |αtR| = αn

t |R|, where αt is the weighting at time t and is fixed not estimated.
6In matrix algebra, a capitol bolded letter indicates a matrix. Unfortunately in statistics,

the capitol letter convention is used for random variables. Fortunately, this derivation does
not need to reference random variables except indirectly when using expectations. Thus, I
use capitols to refer to matrices not random variables. The one exception is the reference to
XXX and in this case a bolded slanted capitol is used.

6

we can also break this down into smaller steps. Let Θ = {α, β}, then

αj+1 = arg max
α

∫
xxx

∫
yyy

log L(xxx,yyy, βj ;α)f(xxx,yyy|YYY (1) = yyy(1), αj , βj)dxxxdyyy (8)

Now the maximization is only over α, the part that appears after the “;” in the
log-likelihood.

Expectation step The integral that appears in equation (7) is an expec-
tation. The first step in the EM algorithm is to compute this expectation.
This will involve computing expectations like E[XXXtXXX

>
t |YYY t(1) = yyyt(1),Θj] and

E[YYY tXXX
>
t |YYY t(1) = yyyt(1),Θj]. The j subscript on Θ denotes that these are the

parameters at iteration j of the algorithm.
Maximization step: A new parameter set Θj+1 is computed by finding

the parameters that maximize the expected log-likelihood function (the part in
the integral) with respect to Θ. The equations that give the parameters for the
next iteration (j+ 1) are called the update equations and this report is devoted
to the derivation of these update equations.

After one iteration of the expectation and maximization steps, the cycle is
then repeated. New expectations are computed using Θj+1, and then a new set
of parameters Θj+2 is generated. This cycle is continued until the likelihood
no longer increases more than a specified tolerance level. This algorithm is
guaranteed to increase in likelihood at each iteration (if it does not, it means
there is an error in one’s update equations). The algorithm must be started from
an initial set of parameter values Θ1. The algorithm is not particularly sensitive
to the initial conditions but the surface could definitely be multi-modal and have
local maxima. See section 7 on using Monte Carlo initialization to ensure that
the global maximum is found.

2.1 The expected log-likelihood function

The function that is maximized in the “M” step is the expected value of the
log-likelihood function. This expectation is conditioned on two things: 1) the
observed YYY ’s which are denoted YYY (1) and which are equal to the fixed val-
ues yyy(1) and 2) the parameter set Θj . Note that since there may be miss-
ing values in the data, YYY (1) can be a subset of YYY , that is, only some YYY
have a corresponding yyy value at time t. Mathematically what we are doing
is EXY[g(XXX,YYY)|YYY (1) = yyy(1),Θj]. This is a multivariate conditional expecta-
tion because XXX,YYY is multivariate (a m×n×T vector). The function g(Θ) that
we are taking the expectation of is log L(YYY ,XXX; Θ). Note that g(Θ) is a random
variable involving the random variables, XXX and YYY , while log L(yyy,xxx; Θ) is not a
random variable but rather a specific value since yyy and xxx are a set of specific
values.

We denote this expected log-likelihood by Ψ. Using the log likelihood equa-

7

tion (5) and expanding out all the terms, we can write out Ψ as:

EXY[log L(YYY ,XXX; Θ);YYY (1) = yyy(1),Θj] = Ψ =

− 1
2

T∑
1

(
E[YYY >t R−1YYY t]− E[YYY >t R−1ZXXXt]− E[(ZXXXt)>R−1YYY t]

− E[a>R−1YYY t]− E[YYY >t R−1a] + E[(ZXXXt)>R−1ZXXXt]

+ E[a>R−1ZXXXt] + E[(ZXXXt)>R−1a] + E[a>R−1a]
)
− T

2
log |R|

− 1
2

T∑
1

(
E[XXX>t Q−1XXXt]− E[XXX>t Q−1BXXXt−1]

− E[(BXXXt−1)>Q−1XXXt]− E[u>Q−1XXXt]− E[XXX>t Q−1u]

+ E[(BXXXt−1)>Q−1BXXXt−1] + E[u>Q−1BXXXt−1]

+ E[(BXXXt−1)>Q−1u] + u>Q−1u
)
− T

2
log |Q|

− 1
2

(
E[XXX>0 V−1

0 XXX0]− E[ξ>Λ−1XXX0]

− E[XXX>0 Λ−1ξ] + ξ>Λ−1ξ

)
− 1

2
log |Λ| − n

2
log π

(9)

All the E[] appearing here denote EXY[g()|YYY (1) = yyy(1),Θj]. In the rest of
the derivation, I drop the conditional and the XY subscript on E to remove
clutter, but it is important to remember that whenever E appears, it refers to
a specific conditional multivariate expectation. If xxx0 is treated as fixed, then
XXX0 = ξ and the last two lines involving Λ are dropped.

Keep in mind that Θ and Θj are different. Θ is a parameter appearing
in function g(XXX,YYY ,Θ). XXX and YYY are random variables which means that
g(XXX,YYY ,Θ) is a random variable. We take the expectation of g(XXX,YYY ,Θ), mean-
ing we take integral over the joint distribution of XXX and YYY . We need to specify
what that distribution is and the conditioning on Θj is specifying that. This
conditioning affects the value of the expectation of g(XXX,YYY ,Θ), but it does not
affect the value of Θ, which are the R, Q, u, etc. values on the right side. We
will first take the expectation of g(XXX,YYY ,Θ) conditioned on Θj (using integra-
tion) and then take the differential of that expectation with respect to Θ.

I will reference the expected log-likelihood throughout the derivation of the
update equations. It could be written more concisely, but for deriving the update
equations, I will keep it in this verbose form. The goal is to find the Θ that
maximizes this expectation and this becomes the new parameter set for the j+1
iteration of the EM algorithm. The equations to compute these new parameters
are termed the update equations.

8

Table 1: Notes on multivariate expectations. For the following examples, let XXX be a
vector of length three, X1, X2, X3. f() is the probability distribution function (pdf).
C is a constant (not a random variable).

EX [g(XXX)] =
∫ ∫ ∫

g(xxx)f(x1, x2, x3)dx1dx2dx3

EX [X1] =
∫ ∫ ∫

x1f(x1, x2, x3)dx1dx2dx3 =
∫
x1f(x1)dx1 = E[X1]

EX [X1 +X2] = EX [X1] + EX [X2]
EX [X1 + C] = EX [X1] + C
EX [CX1] = C EX [X1]
EX [X1|X1 = x1] = x1

EX [XXX|XXX = xxx] = xxx

2.2 The expectations used in the derivation

The following expectations appear frequently in the update equations and are
given special names7:

x̃t = EXY[XXXt|YYY (1) = yyy(1),Θj] (10a)
ỹt = EXY[YYY t|YYY (1) = yyy(1),Θj] (10b)

P̃t = EXY[XXXtXXX
>
t |YYY (1) = yyy(1),Θj] (10c)

P̃t,t−1 = EXY[XXXtXXX
>
t−1|YYY (1) = yyy(1),Θj] (10d)

Ṽt = varXY [XXXt|YYY (1) = yyy(1),Θj] = P̃t − x̃tx̃
>
t (10e)

Õt = EXY[YYY tYYY
>
t |YYY (1) = yyy(1),Θj] (10f)

W̃t = varXY [YYY t|YYY (1) = yyy(1),Θj] = Õt − ỹtỹ
>
t (10g)

ỹxt = EXY[YYY tXXX
>
t |YYY (1) = yyy(1),Θj] (10h)

ỹxt,t−1 = EXY[YYY tXXX
>
t−1|YYY (1) = yyy(1),Θj] (10i)

The subscript on the expectation, E, denotes that this is a multivariate expec-
tation taken over XXX and YYY . The right sides of equations (10e) and (10g) arise
from the computational formula for variance and covariance:

var[X] = E[XX>]− E[X] E[X]> (11)

cov[X,Y] = E[XY >]− E[X] E[Y]>. (12)

Section 5 shows how to compute the expectations in equation 10.

7This notation is different than what you see in Shumway and Stoffer (2006), section 6.2.

What I call Ṽt, they refer to as Pn
t , and my P̃t would be Pn

t + x̃tx̃
′
t in their notation.

9

3 The unconstrained update equations

In this section, I show the derivation of the update equations when all elements
of a parameter matrix are estimated and are all allowed to be different; these
are similar to the update equations one will see in Shumway and Stoffer’s text.
Section 4 shows the update equations when there are fixed or shared values in
the parameter matrices, i.e. the constrained update equations.

To derive the update equations, one must find the Θ, where Θ is comprised of
the MARSS parameters B, u, Q, Z, a, R, ξ, and Λ, that maximizes Ψ (equation
9) by partial differentiation of Ψ with respect to Θ. However, I will be using
the EM equation where one maximizes each parameter matrix in Θ one-by-one
(equation 8). In this case, the parameters that are not being maximized are set
at their iteration j values, and then one takes the derivative of Ψ with respect
to the parameter of interest. Then solve for the parameter value that sets the
partial derivative to zero. The partial differentiation is with respect to each
individual parameter element, for example each uk in the vector u. The idea
is to single out those terms in equation (9) that involve uk (say), differentiate
by uk, set this to zero and solve for uk. This gives the new uk that maximizes
the partial derivative with respect to uk of the expected log-likelihood. Matrix
calculus gives us a way to jointly maximize Ψ with respect to all elements (not
just element k) in a parameter vector or matrix.

3.1 Matrix calculus need for the derivation

Before commencing, some definitions from matrix calculus will be needed. The
partial derivative of a scalar (Ψ is a scalar) with respect to some column vector
b (which has elements b1, b2 . . .) is

∂Ψ
∂b

=
[
∂Ψ
∂b1

∂Ψ
∂b2

· · · ∂Ψ
∂bn

]
Note that the derivative of a column vector b is a row vector. The partial
derivatives of a scalar with respect to some n× n matrix B is

∂Ψ
∂B

=

∂Ψ
∂b1,1

∂Ψ
∂b2,1

· · · ∂Ψ
∂bn,1

∂Ψ
∂b1,2

∂Ψ
∂b2,2

· · · ∂Ψ
∂bn,2

· · · · · · · · · · · ·

∂Ψ
∂b1,n

∂Ψ
∂b2,n

· · · ∂Ψ
∂bn,n

Note that the indexing is interchanged; ∂Ψ/∂bi,j =

[
∂Ψ/∂B

]
j,i

. For Q and R,
this is unimportant because they are variance-covariance matrices and are sym-
metric. For B and Z, one must be careful because these may not be symmetric.

10

Table 2: Derivatives of a scalar with respect to vectors and matrices. In the following
a and c are n × 1 column vectors, b and d are m × 1 column vectors, D is a n ×m
matrix, C is a n×n matrix, and A is a diagonal n×n matrix (0s on the off-diagonals).

C−1 is the inverse of C, C> is the transpose of C, C−> =
(
C−1

)>
=

(
C>

)−1
, and

|C| is the determinant of C. Note, all the numerators in the differentials reduce to
scalars.

∂(a>c)/∂a = ∂(c>a)/∂a = c> (13)

∂(a>Db)/∂D = ∂(b>D>a)/∂D = ba> (14)
∂(a>Db)/∂ vec(D) = ∂(b>D>a)/∂ vec(D) =

(
vec(ba>)

)>
∂(log |C|)/∂C = −∂(log |C−1|)/∂C = (C>)−1 = C−> (15)
∂(log |C|)/∂ vec(C) =

(
vec(C−>)

)>
∂(b>D>CDd)/∂D = db>D>C + bd>D>C>

(16)∂(b>D>CDd)/∂ vec(D) =
(

vec(db>D>C + bd>D>C>)
)>

If b = d and C is symmetric then the sum reduces to 2bb>D>C

∂(a>Ca)/∂a = ∂(aC>a>)/∂a = 2a>C (17)

∂(a>C−1c)/∂C = −C−1ac>C−1

(18)
∂(a>C−1c)/∂ vec(C) = −

(
vec(C−1ac>C−1)

)>

A number of derivatives of a scalar with respect to vectors and matrices will
be needed in the derivation and are shown in table 2. In the table, both the
vectorized and non-vectorized versions are shown. The vectorized version of a
matrix D with dimension n×m is

vec(Dn,m) ≡

d1,1

· · ·
dn,1
d1,2

· · ·
dn,2
· · ·
d1,m

· · ·
dn,m

11

3.2 The update equation for u (unconstrained)

Take the partial derivative of Ψ with respect to u, which is a m × 1 column
vector. All parameters other than u are fixed to constant values (because partial
derivation is being done). Since the derivative of a constant is 0, terms not
involving u will equal 0 and drop out. Taking the derivative to equation (9)
with respect to u:

∂Ψ/∂u = −1
2

T∑
t=1

(
− ∂(E[XXX>t Q−1u])/∂u− ∂(E[u>Q−1XXXt])/∂u

+ ∂(E[(BXXXt−1)>Q−1u])/∂u + ∂(E[u>Q−1BXXXt−1])/∂u

+ ∂(u>Q−1u)/∂u
) (19)

The parameters can be moved out of the expectations and then the relations
(13) and (17) are used to take the derivative.

∂Ψ/∂u = −1
2

T∑
t=1

(
− E[XXXt]>Q−1 − (Q−1 E[XXXt])>

+ (B> E[XXXt−1])>Q−1 + (Q−1B E[XXXt−1])> + 2u>Q−1

) (20)

This also uses Q−1 = (Q−1)>. This can then be reduced to

∂Ψ/∂u =
T∑
t=1

(
E[XXXt]>Q−1 − E[XXXt−1]>B>Q−1 − u>Q−1

)
(21)

Set the left side to zero (a 1 × m matrix of zeros) and transpose the whole
equation. Q−1 cancels out8 by multiplying on the left by Q (left since the
whole equation was just transposed), giving

0 =
T∑
t=1

(
E[XXXt]−B E[XXXt−1]− u

)
=

T∑
t=1

(
E[XXXt]−B E[XXXt−1]

)
− Tu (22)

Solving for u and replacing the expectations with their names from equation 10,
gives us the new u that maximizes Ψ,

uj+1 =
1
T

T∑
t=1

(
x̃t −Bx̃t−1

)
(23)

3.3 The update equation for B (unconstrained)

Take the derivative of Ψ with respect to B. Terms not involving B, equal 0 and
drop out. I have put the E outside the partials by noting that ∂(E[h(XXXt,B)])/∂B =

8Q is a variance-covariance matrix and is invertible. Q−1Q = I, the identity matrix.

12

E[∂(h(XXXt,B))/∂B] since the expectation is conditioned on Bj not B.

∂Ψ/∂B = −1
2

T∑
t=1

(
− E[∂(XXX>t Q−1BXXXt−1)/∂B]

− E[∂((BXXXt−1)>Q−1XXXt)/∂B] + E[∂((BXXXt−1)>Q−1(BXXXt−1))/∂B]

+ E[∂((BXXXt−1)>Q−1u)/∂B] + E[∂(u>Q−1BXXXt−1)/∂B]
)

= −1
2

T∑
t=1

(
− E[∂(XXX>t Q−1BXXXt−1])/∂B]

− E[∂(XXX>t−1B
>Q−1XXXt)/∂B] + E[∂(XXX>t−1B

>Q−1(BXXXt−1))/∂B]

+ E[∂(XXX>t−1B
>Q−1u)/∂B] + E[∂(u>Q−1BXXXt−1)/∂B

)
]

(24)

After pulling the constants out of the expectations, we use relations (14) and
(16) to take the derivative and note that Q−1 = (Q−1)>:

∂Ψ/∂B = −1
2

T∑
t=1

(
− E[XXXt−1XXX

>
t]Q−1 − E[XXXt−1XXX

>
t]Q−1

+ 2 E[XXXt−1XXX
>
t−1]B>Q−1 + E[XXXt−1]u>Q−1 + E[XXXt−1]u>Q−1

) (25)

This can be reduced to

∂Ψ/∂B = −1
2

T∑
t=1

(
− 2 E[XXXt−1XXX

>
t]Q−1

+ 2 E[XXXt−1XXX
>
t−1]B>Q−1 + 2 E[XXXt−1]u>Q−1

) (26)

Set the left side to zero (an m×m matrix of zeros), cancel out Q−1 by multi-
plying by Q on the right, get rid of the -1/2, and transpose the whole equation
to give

0 =
T∑
t=1

(
E[XXXtXXX

>
t−1]−B E[XXXt−1XXX

>
t−1]− u E[XXX>t−1]

)
=

T∑
t=1

(
P̃t,t−1 −BP̃t−1 − ux̃>t−1

) (27)

The last line replaced the expectations with their names shown in equation (10).
Solving for B and noting that P̃t−1 is like a variance-covariance matrix and is
invertible, gives us the new B that maximizes Ψ,

Bj+1 =
(T∑
t=1

(
P̃t,t−1 − ux̃>t−1

))(T∑
t=1

P̃t−1

)−1

(28)

13

Because all the equations above also apply to block-diagonal matrices, the
derivation immediately generalizes to the case where B is an unconstrained
block diagonal matrix:

B =

b1,1 b1,2 b1,3 0 0 0 0 0
b2,1 b2,2 b2,3 0 0 0 0 0
b3,1 b3,2 b3,3 0 0 0 0 0
0 0 0 b4,4 b4,5 0 0 0
0 0 0 b5,4 b5,5 0 0 0
0 0 0 0 0 b6,6 b6,7 b6,8
0 0 0 0 0 b7,6 b7,7 b7,8
0 0 0 0 0 b8,6 b8,7 b8,8

=

B1 0 0
0 B2 0
0 0 B3

For the block diagonal B,

Bi,j+1 =
(T∑
t=1

(
P̃t,t−1 − ux̃>t−1

))
i

(T∑
t=1

P̃t−1

)−1

i

(29)

where the subscript i means to take the parts of the matrices that are analogous
to Bi; take the whole part within the parentheses not the individual matrices
inside the parentheses. If Bi is comprised of rows a to b and columns c to d of
matrix B, then take rows a to b and columns c to d of the matrices subscripted
by i in equation (29).

3.4 The update equation for Q (unconstrained)

The usual way to do this derivation is to use what is known as the “trace trick”
which will pull the Q−1 out to the left of the c>Q−1b terms which appear in the
likelihood (9). Here I’m showing a less elegant derivation that plods step by step
through each of the likelihood terms. Take the derivative of Ψ with respect to Q.
Terms not involving Q equal 0 and drop out. Again the expectations are placed
outside the partials by noting that ∂(E[h(XXXt,Q)])/∂Q = E[∂(h(XXXt,Q))/∂Q].

∂Ψ/∂Q = −1
2

T∑
t=1

(
E[∂(XXX>t Q−1XXXt)/∂Q]− E[∂(XXX>t Q−1BXXXt−1)/∂Q]

− E[∂((BXXXt−1)>Q−1XXXt)/∂Q]− E[∂(XXX>t Q−1u)/∂Q]

− ∂(E[u>Q−1XXXt)/∂Q] + E[∂((BXXXt−1)>Q−1BXXXt−1)/∂Q]

+ E[∂((BXXXt−1)>Q−1u)/∂Q] + E[∂(u>Q−1BXXXt−1)/∂Q]

+ ∂(u>Q−1u)/∂Q
)
− ∂

(
T

2
log |Q|

)
/∂Q

(30)

The relations (18) and (15) are used to do the differentiation. Notice that all the
terms in the summation are of the form c>Q−1b, and thus after differentiation,
all the c>b terms can be grouped inside one set of parentheses. Also there is a

14

minus that comes from equation (18) and it cancels out the minus in front of
the initial −1/2.

∂Ψ/∂Q =
1
2

T∑
t=1

Q−1

(
E[XXXtXXX

>
t]− E[XXXt(BXXXt−1)>]− E[BXXXt−1XXX

>
t]

− E[XXXtu>]− E[uXXX>t] + E[BXXXt−1(BXXXt−1)>] + E[BXXXt−1u>]

+ E[u(BXXXt−1)>] + uu>
)

Q−1 − T

2
Q−1

(31)

Pulling the parameters out of the expectations and using (BXXXt)> = XXX>t B>, we
have

∂Ψ/∂Q =
1
2

T∑
t=1

Q−1

(
E[XXXtXXX

>
t]− E[XXXtXXX

>
t−1]B> −B E[XXXt−1XXX

>
t]

− E[XXXt]u> − u E[XXX>t] + B E[XXXt−1XXX
>
t−1]B> + B E[XXXt−1]u>

+ u E[XXX>t−1]B> + uu>
)

Q−1 − T

2
Q−1

(32)

The partial derivative is then rewritten in terms of the Kalman smoother output:

∂Ψ/∂Q =
1
2

T∑
t=1

Q−1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t

+ BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

)
Q−1 − T

2
Q−1

(33)

Setting this to zero (a m×m matrix of zeros), Q−1 is canceled out by multiplying
by Q twice, once on the left and once on the right and the 1/2 is removed.

0 =
T∑
t=1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t

+ BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

)
− TQ

(34)

We can then solve for Q, giving us the new Q that maximizes Ψ,

Qj+1 =
1
T

T∑
t=1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t

+ BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

) (35)

This derivation immediately generalizes to the case where Q is a block di-

15

agonal matrix:

Q =

q1,1 q1,2 q1,3 0 0 0 0 0
q1,2 q2,2 q2,3 0 0 0 0 0
q1,3 q2,3 q3,3 0 0 0 0 0
0 0 0 q4,4 q4,5 0 0 0
0 0 0 q4,5 q5,5 0 0 0
0 0 0 0 0 q6,6 q6,7 q6,8

0 0 0 0 0 q6,7 q7,7 q7,8

0 0 0 0 0 q6,8 q7,8 q8,8

=

Q1 0 0
0 Q2 0
0 0 Q3

In this case,

Qi,j+1 =
1
T

T∑
t=1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t

+ BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

)
i

(36)

where the subscript i means take the elements of the matrix (in the big paren-
theses) that are analogous to Qi; take the whole part within the parentheses
not the individual matrices inside the parentheses). If Qi is comprised of rows
a to b and columns c to d of matrix Q, then take rows a to b and columns c to
d of matrices subscripted by i in equation (36).

By the way, Q is never really unconstrained since it is a variance-covariance
matrix and the upper and lower triangles are shared. However, because the
shared values are only the symmetric values in the matrix, the derivation still
works even though it’s technically incorrect (Henderson and Searle, 1979). The
constrained update equation for Q shown in section 4.8 explicitly deals with the
shared lower and upper triangles.

3.5 Update equation for a (unconstrained)

Take the derivative of Ψ with respect to a, where a is a n × 1 column vector.
Terms not involving a, equal 0 and drop out.

∂Ψ/∂a = −1
2

T∑
t=1

(
− ∂(E[YYY >t R−1a])/∂a− ∂(E[a>R−1YYY t])/∂a

+ ∂(E[(ZXXXt)>R−1a])/∂a + ∂(E[a>R−1ZXXXt])/∂a + ∂(E[a>R−1a])/∂a
)

(37)

16

The expectations around constants can be dropped9. Using relations (13) and
(17) and using R−1 = (R−1)>, we have then

∂Ψ/∂a = −1
2

T∑
t=1

(
− E[YYY >t R−1]− E[(R−1YYY t)>] + E[(ZXXXt)>R−1]

+ E[(R−1ZXXXt)>] + 2a>R−1

) (38)

Pull the parameters out of the expectations, use (ab)> = b>a> and R−1 =
(R−1)> where needed, and remove the −1/2 to get

∂Ψ/∂a =
T∑
t=1

(
E[YYY t]>R−1 − E[XXXt]>Z>R−1 − a>R−1

)
(39)

Set the left side to zero (a 1×n matrix of zeros), take the transpose, and cancel
out R−1 by multiplying by R, giving

0 =
T∑
t=1

(
E[YYY t]− Z E[XXXt]− a

)
=

T∑
t=1

(
ỹt − Zx̃t − a

)
(40)

Solving for a gives us the update equation for a:

aj+1 =
1
T

T∑
t=1

(
ỹt − Zx̃t

)
(41)

3.6 The update equation for Z (unconstrained)

Take the derivative of Ψ with respect to Z. Terms not involving Z, equal 0 and
drop out. The expectations around terms involving only constants have been
dropped.

∂Ψ/∂Z = (note ∂Z is m× n while Z is n×m)

− 1
2

T∑
t=1

(
− E[∂(YYY >t R−1ZXXXt)/∂Z]

− E[∂((ZXXXt)>R−1YYY t)/∂Z] + E[∂((ZXXXt)>R−1ZXXXt)/∂Z]

+ E[∂((ZXXXt)>R−1a)/∂Z] + E[∂(a>R−1ZXXXt)/∂B]
)

= −1
2

T∑
t=1

(
− E[∂(YYY >t R−1ZXXXt)/∂Z]

− E[∂(XXX>t Z>R−1YYY t)/∂Z] + E[∂(XXX>t Z>R−1ZXXXt)/∂Z]

+ E[∂(XXX>t Z>R−1a)/∂Z] + E[∂(a>R−1ZXXXt)/∂Z]
)

(42)

9because EXY(C) = C, where C is a constant.

17

Using relations (14) and (16) and using R−1 = (R−1)>, we get

∂Ψ/∂Z = −1
2

T∑
t=1

(
− E[XXXtYYY

>
t R−1]− E[XXXtYYY

>
t R−1]

+ 2 E[XXXtXXX
>
t Z>R−1] + E[XXXt−1a>R−1] + E[XXXta>R−1]

) (43)

Pulling the parameters out of the expectations and getting rid of the −1/2, we
have

∂Ψ/∂Z =
T∑
t=1

(
E[XXXtYYY

>
t]R−1 − E[XXXtXXX

>
t]Z>R−1 − E[XXXt]a>R−1

)
(44)

Set the left side to zero (a m × n matrix of zeros), transpose it all, and cancel
out R−1 by multiplying by R on the left, to give

0 =
T∑
t=1

(
E[YYY tXXX

>
t]− Z E[XXXtXXX

>
t]− a E[XXX>t]

)
=

T∑
t=1

(
ỹxt − ZP̃t − ax̃>t

) (45)

Solving for Z and noting that P̃t is invertible, gives us the new Z:

Zj+1 =
(T∑
t=1

(
ỹxt − ax̃>t

))(T∑
t=1

P̃t

)−1

(46)

3.7 The update equation for R (unconstrained)

Take the derivative of Ψ with respect to R. Terms not involving R, equal 0
and drop out. The expectations around terms involving constants have been
removed.

∂Ψ/∂R = −1
2

T∑
t=1

(
E[∂(YYY >t R−1YYY t)/∂R]− E[∂(YYY >t R−1ZXXXt)/∂R]

− E[∂((ZXXXt)>R−1YYY t)/∂R]− E[∂(YYY >t R−1a)/∂R]

− E[∂(a>R−1YYY t)/∂R] + E[∂((ZXXXt)>R−1ZXXXt)/∂R]

+ E[∂((ZXXXt)>R−1a)/∂R] + E[∂(a>R−1ZXXXt)/∂R]

+ ∂(a>R−1a)/∂R
)
− ∂

(T
2

log |R|
)
/∂R

(47)

We use relations (18) and (15) to do the differentiation. Notice that all the
terms in the summation are of the form c>R−1b, and thus after differentiation,

18

we group all the c>b inside one set of parentheses. Also there is a minus that
comes from equation (18) and cancels out the minus in front of −1/2.

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
E[YYY tYYY

>
t]− E[YYY t(ZXXXt)>]− E[ZXXXtYYY

>
t]

− E[YYY ta>]− E[aYYY >t] + E[ZXXXt(ZXXXt)>] + E[ZXXXta>] + E[a(ZXXXt)>]

+ aa>
)

R−1 − T

2
R−1

(48)

Pulling the parameters out of the expectations and using (ZYYY t)> = YYY >t Z>, we
have

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
E[YYY tYYY

>
t]− E[YYY tXXX

>
t]Z> − Z E[XXXtYYY

>
t]− E[YYY t]a> − a E[YYY >t]

+ Z E[XXXtXXX
>
t]Z> + Z E[XXXt]a> + a E[XXX>t]Z> + aa>

)
R−1 − T

2
R−1

(49)

We rewrite the partial derivative in terms of expectations:

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
Õt − ỹxtZ

> − Zỹx>t − ỹta
> − aỹ>t

+ ZP̃tZ> + Zx̃ta> + ax̃>t Z> + aa>
)

R−1 − T

2
R−1

(50)

Setting this to zero (a n×n matrix of zeros), we cancel out R−1 by multiplying
by R twice, once on the left and once on the right, and get rid of the 1/2.

0 =
T∑
t=1

(
Õt − ỹxtZ

> − Zỹx>t − ỹta
> − aỹ>t

+ ZP̃tZ> + Zx̃ta> + ax̃>t Z> + aa>
)
− TR

(51)

We can then solve for R, giving us the new R that maximizes Ψ,

Rj+1 =
1
T

T∑
t=1

(
Õt − ỹxtZ

> − Zỹx>t − ỹta
> − aỹ>t

+ ZP̃tZ> + Zx̃ta> + ax̃>t Z> + aa>
) (52)

As with Q, this derivation immediately generalizes to a block diagonal matrix:

R =

R1 0 0
0 R2 0
0 0 R3

19

In this case,

Ri,j+1 =
1
T

T∑
t=1

(
Õt − ỹxtZ

> − Zỹx>t − ỹta
> − aỹ>t

+ ZP̃tZ> + Zx̃ta> + ax̃>t Z> + aa>
)
i

(53)

where the subscript i means we take the elements in the matrix in the big
parentheses that are analogous to Ri. If Ri is comprised of rows a to b and
columns c to d of matrix R, then we take rows a to b and columns c to d of
matrix subscripted by i in equation (53).

3.8 Update equation for ξ and Λ (unconstrained), stochas-
tic initial state

Shumway and Stoffer (2006) and Ghahramani and Hinton (1996) imply in their
discussion of the EM algorithm that both ξ and Λ can be estimated (though
not simultaneously). Harvey (1989), however, discusses that there are only
two allowable cases: xxx0 is treated as fixed (Λ = 0) and equal to the unknown
parameter ξ or xxx0 is treated as stochastic with a known mean ξ and variance Λ.
For completeness, we show here the update equation in the case of xxx0 stochastic
with unknown mean ξ and variance Λ (a case that Harvey (1989) says is not
consistent).

We proceed as before and solve for the new ξ by minimizing Ψ. Take the
derivative of Ψ with respect to ξ . Terms not involving ξ, equal 0 and drop out.

∂Ψ/∂ξ = −1
2
(
− ∂(E[ξ>Λ−1XXX0])/∂ξ − ∂(E[XXX>0 Λ−1ξ])/∂ξ

+ ∂(ξ>Λ−1ξ)/∂ξ
) (54)

Using relations (13) and (17) and using Λ−1 = (Λ−1)>, we have

∂Ψ/∂ξ = −1
2
(
− E[XXX>0 Λ−1]− E[XXX>0 Λ−1] + 2ξ>Λ−1

)
(55)

Pulling the parameters out of the expectations, we get

∂Ψ/∂ξ = −1
2
(
− 2 E[XXX>0]Λ−1 + 2ξ>Λ−1

)
(56)

We then set the left side to zero, take the transpose, and cancel out −1/2 and
Λ−1 (by noting that it is a variance-covariance matrix and is invertible).

0 =
(
Λ−1 E[XXX0] + Λ−1ξ

)
= (x̃0 − ξ) (57)

Thus,
ξj+1 = x̃0 (58)

20

x̃0 is the expected value of XXX0 conditioned on the data from t = 1 to T , which
comes from the Kalman smoother recursions with initial conditions defined as
E[XXX0|YYY 0 = yyy0] ≡ ξ and var(XXX0XXX

>
0 |YYY 0 = yyy0) ≡ Λ. A similar set of steps gets

us to the update equation for Λ,

Λj+1 = Ṽ0 (59)

Ṽ0 is the variance of XXX0 conditioned on the data from t = 1 to T and is an
output from the Kalman smoother recursions.

If the initial state is defined as at t = 1 instead of t = 0, the update equation
is derived in an identical fashion and the update equation is similar:

ξj+1 = x̃1 (60)

Λj+1 = Ṽ1 (61)

These are output from the Kalman smoother recursions with initial conditions
defined as E[XXX1|YYY 0 = yyy0] ≡ ξ and var(XXX1XXX

>
1 |YYY 0 = yyy0) ≡ Λ. Notice that the

recursions are initialized slightly differently; you will see the Kalman filter and
smoother equations presented with both types of initializations depending on
whether the author defines the initial state at t = 0 or t = 1.

3.9 Update equation for ξ (unconstrained), fixed xxx0

For the case where xxx0 is treated as fixed, i.e. as another parameter, then there
is no Λ, and we need to maximize ∂Ψ/∂ξ using the slightly different Ψ shown
in equation (6). Now ξ appears in the state equation part of the likelihood.

∂Ψ/∂ξ = −1
2

(
− E[∂(XXX>1 Q−1Bξ)/∂ξ]

− E[∂((Bξ)>Q−1XXX1)/∂ξ] + E[∂((Bξ)>Q−1(Bξ))/∂ξ]

+ E[∂((Bξ)>Q−1u)/∂ξ] + E[∂(u>Q−1Bξ)/∂ξ]
)

= −1
2

(
− E[∂(XXX>1 Q−1Bξ)/∂ξ]

− E[∂(ξ>B>Q−1XXX1)/∂ξ] + E[∂(ξ>B>Q−1(Bξ))/∂ξ]

+ E[∂(ξ>B>Q−1u)/∂ξ] + E[∂(u>Q−1Bξ)/∂ξ]
)

(62)

After pulling the constants out of the expectations, we use relations (14) and
(16) to take the derivative:

∂Ψ/∂ξ = −1
2

(
− E[XXX1]>Q−1B− E[XXX1]>Q−1B

+ 2ξ>B>Q−1B + u>Q−1B + u>Q−1B
) (63)

21

This can be reduced to

∂Ψ/∂ξ = E[XXX1]>Q−1B− ξ>B>Q−1B− u>Q−1B (64)

To solve for ξ, set the left side to zero (an m× 1 matrix of zeros), transpose the
whole equation, and then cancel out B>Q−1B by multiplying by its inverse on
the left, and solve for ξ. This step requires that this inverse exists.

ξ = (B>Q−1B)−1B>Q−1(E[XXX1]− u) (65)

Thus, in terms of the Kalman filter/smoother output the new ξ for EM iteration
j + 1 is

ξj+1 = (B>Q−1B)−1B>Q−1(x̃1 − u) (66)

Note that using, x̃0 output from the Kalman smoother would not work since
Λ = 0. As a result, ξj+1 ≡ ξj in the EM algorithm, and it is impossible to
move away from your starting condition for ξ.

This is conceptually similar to using a generalized least squares estimate of
ξ to concentrate it out of the likelihood as discussed in Harvey (1989), section
3.4.4. However, in the context of the EM algorithm, dealing with the fixed xxx0

case requires nothing special; one simply takes care to use the likelihood for
the case where xxx0 is treated as an unknown parameter (equation 6). For the
other parameters, the update equations are the same whether one uses the log-
likelihood equation with xxx0 treated as stochastic (equation 5) or fixed (equation
6).

If your MARSS model is stationary10 and your data appear stationary, how-
ever, equation (65) probably is not what you want to use. The estimate of ξ will
be the maximum-likelihood value, but it will not be drawn from the stationary
distribution; instead it could be some wildly different value that happens to give
the maximum-likelihood. If you are modeling the data as stationary, then you
should probably assume that ξ is drawn from the stationary distribution of the
XXX’s, which is some function of your model parameters. This would mean that
the model parameters would enter the part of the likelihood that involves ξ and
Λ. Since you probably don’t want to do that (if might start to get circular),
you might try an iterative process to get decent ξ and Λ or try fixing ξ and
estimating Λ (above). You can fix ξ at, say, zero, by making sure the model
you fit has a stationary distribution with mean zero. You might also need to
demean your data (or estimate the a term to account for non-zero mean data).

3.10 Update equation for ξ (unconstrained), fixed xxx1

In some cases, the estimate of xxx0 from xxx1 using equation 66 will be highly
sensitive to small changes in the parameters. This is particularly the case for
certain B matrices, even if they are stationary. The result is that your ξ estimate

10meaning the XXX’s have a stationary distribution

22

is wildly different from the data at t = 1. The estimates are correct given how
you defined the model, just not realistic given the data. In this case, you might
want to specify ξ as being the value of xxx at t = 1 instead of t = 0. That way,
the data at t = 1 will constrain the estimated ξ. In this case, we treat xxx1 as
fixed but unknown, and the variance of XXX1 is zero. The likelihood is then:

log L(yyy,xxx; Θ) = −
T∑
1

1
2

(yyyt − Zxxxt − a)>R−1(yyyt − Zxxxt − a)−
T∑
1

1
2

log |R|

−
T∑
2

1
2

(xxxt −Bxxxt−1 − u)>Q−1(xxxt −Bxxxt−1 − u)−
T∑
1

1
2

log |Q|

xxx1 ≡ ξ

(67)

∂Ψ/∂ξ = −1
2

(
− E[∂(YYY >1 R−1Zξ)/∂ξ]

− E[∂((Zξ)>R−1YYY 1)/∂ξ] + E[∂((Zξ)>R−1(Zξ))/∂ξ]

+ E[∂((Zξ)>R−1a)/∂ξ] + E[∂(a>R−1Zξ)/∂ξ]
)

− 1
2

(
− E[∂(XXX>2 Q−1Bξ)/∂ξ]

− E[∂((Bξ)>Q−1XXX2)/∂ξ] + E[∂((Bξ)>Q−1(Bξ))/∂ξ]

+ E[∂((Bξ)>Q−1u)/∂ξ] + E[∂(u>Q−1Bξ)/∂ξ]
)

(68)

Note that the second summation starts at t = 2 and ξ is xxx1 instead of xxx0.
After pulling the constants out of the expectations, we use relations (14) and

(16) to take the derivative:

∂Ψ/∂ξ = −1
2

(
− E[YYY 1]>R−1Z− E[YYY 1]>R−1Z

+ 2ξ>Z>R−1Z + a>R−1Z + a>R−1Z
)

− 1
2

(
− E[XXX2]>Q−1B− E[XXX2]>Q−1B

+ 2ξ>B>Q−1B + u>Q−1B + u>Q−1B
)

(69)

This can be reduced to

∂Ψ/∂ξ = E[YYY 1]>R−1Z− ξ>Z>R−1Z− a>R−1Z

+ E[XXX2]>Q−1B− ξ>B>Q−1B− u>Q−1B

= −ξ>(Z>R−1Z + B>Q−1B) + E[YYY 1]>R−1Z− a>R−1Z

+ E[XXX2]>Q−1B− u>Q−1B

(70)

23

To solve for ξ, set the left side to zero (an m× 1 matrix of zeros), transpose the
whole equation, and solve for ξ.

ξ = (Z>R−1Z + B>Q−1B)−1(Z>R−1(E[YYY 1]− a) + B>Q−1(E[XXX2]− u))
(71)

Thus, when ξ ≡ xxx1, the new ξ for EM iteration j + 1 is

ξj+1 = (Z>R−1Z + B>Q−1B)−1(Z>R−1(ỹ1 − a) + B>Q−1(x̃2 − u)) (72)

4 The constrained update equations

The previous sections dealt with the case where all the elements in a parameter
matrix are estimated. In this section, I deal with the case where some of the
elements are constrained, for example when some matrix elements are fixed
values or are linear combinations of other elements.

Let’s say we have some parameter matrix M (here M could be any of the
parameters in the MARSS model) where each matrix element is written as a
linear model of some potentially shared values:

M =

a+ 2c+ 2 0.9 c
−1.2 a 0

0 3c+ 1 b

Thus each i-th element in M can be written as βi + βa,ia+ βb,ib+ βc,ic, which
is a linear combination of three estimated values a, b and c. The matrix M can
be rewritten in terms of a βi part and the part involving the β−,j ’s:

M =

 2 0.9 0
−1.2 0 0

0 1 0

+

a+ 2c 0 c
0 a 0
0 3c b

 = Mfixed + Mfree

The vec function turns any matrix into a column vector by stacking the columns
on top of each other. Thus,

vec(M) =

a+ 2c+ 2
−1.2

0
0.9
a

3c+ 1
c
0
b

We can now write vec(M) as a linear combination of f = vec(Mfixed) and
Dm = vec(Mfree). m is a p× 1 column vector of the p free values, in this case

24

p = 3 and the free values are a, b, c. D is a design matrix that translates m into
vec(Mfree). For example,

vec(M) =

a+ 2c+ 2
−1.2

0
0.9
a

3c+ 1
c
0
b

=

0
−1.2

2
0.9
0
1
0
0
0

+

1 2 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 3
0 0 1
0 0 0
0 1 0

ab
c

 = f + Dm

There are constraints on D. Your D matrix needs to describe a solvable linear
set of equations. Basically it needs to be full rank (rank p where p is the
number of columns in D or free values you are trying to estimate), so that you
can estimate each of the p free values. For example, if a + b always appeared
together, then a+ b can be estimated but not a and b separately. Note, if M is
fixed, then D is undefined but that is fine because in this case, there will be no
update equation needed; you just use the fixed value of M in the algorithm.

The derivation proceeds by rewriting the likelihood as a function of vec(M),
where M is whatever parameter matrix for which one is deriving the update
equation. Then one rewrites that as a function of m using the relationship
vec(M) = f + Dm. Finally, one finds the m that sets the derivative of Ψ with
respect to m to zero. Conceptually, the algebraic steps in the derivation are
similar to those in the unconstrained derivation. Thus, I will leave out most of
the intermediate steps. The derivations require a few new matrix algebra and
vec relationships; these are shown in Table 3.

4.1 The general u update equations

Since u is already a column vector, it can be rewritten simply as u = fu+ Duυυυ,
where υυυ is the column vector of estimated parameters in u. We then solve
for ∂Ψ/∂υυυ by replacing u with u = fu + Duυυυ in the expected log likelihood
function. In the derivation below, the u subscripts on f and D have been left
off to remove clutter.

∂Ψ/∂υυυ = −1
2

T∑
t=1

(
− ∂(E[XXX>t Q−1(f + Dυυυ)])/∂υυυ

− ∂(E[(f + Dυυυ)>Q−1XXXt])/∂υυυ + ∂(E[(BXXXt−1)>Q−1(f + Dυυυ)])/∂υυυ

+ ∂(E[(f + Dυυυ)>Q−1BXXXt−1])/∂υυυ + ∂((f + Dυυυ)>Q−1(f + Dυυυ))/∂υυυ
) (81)

25

Table 3: Kronecker and vec relations. Here A is n ×m, B is m × p, C is p × q. a is
a m× 1 column vector and b is a p× 1 column vector. The symbol ⊗ stands for the
Kronecker product: A ⊗C is a np ×mq matrix. The identity matrix, In, is a n × n
diagonal matrix with ones on the diagonal.

vec(a) = vec(a>) = a (73)The vec of a column vector (or its transpose) is itself.

vec(Aa) = (a> ⊗ In) vec(A) = Aa (74)vec(Aa) = Aa since Aa is itself an m× 1 column vector.

vec(AB) = (Ip ⊗A) vec(B) = (B> ⊗ In) vec(A) (75)

vec(ABC) = (C> ⊗A) vec(B) (76)

(A⊗B)(C⊗D) = (AC⊗BD) (77)

(a⊗ Ip)C = (a⊗C) (78)
C(a> ⊗ Iq) = (a> ⊗C)

(a⊗ Ip)C(b> ⊗ Iq) = (ab> ⊗C) (79)

(a⊗ a) = vec(aa>) (80)(a> ⊗ a>) = (a⊗ a)> = (vec(aa>))>

26

The terms involving only f drop out (because they don’t involve υυυ). This gives

∂Ψ/∂υυυ = −1
2

T∑
t=1

(
− ∂(E[XXX>t Q−1Dυυυ])/∂υυυ − ∂(E[(Dυυυ)>Q−1XXXt])/∂υυυ

+ ∂(E[(BXXXt−1)>Q−1Dυυυ])/∂υυυ + ∂(E[(Dυυυ)>Q−1BXXXt−1])/∂υυυ

+ ∂(f>Q−1Dυυυ)/∂υυυ + ∂((Dυυυ)>Q−1f)/∂υυυ + ∂((Dυυυ)>Q−1Dυυυ)/∂υυυ
) (82)

Using the matrix differentiation relations in section 3.1, we get

∂Ψ/∂υυυ = −1
2

T∑
t=1

(
− 2 E[XXX>t Q−1D] + 2 E[(BXXXt−1)>Q−1D]

+ 2f>Q−1D + 2υυυ>D>Q−1D
) (83)

Set the left side to zero and transpose the whole equation. Then we solve for υυυ.

0 =
T∑
t=1

(
D>Q−1(E[XXXt]−B E[XXXt−1]− f)−D>Q−1Dυυυ

)
(84)

Thus,

TD>Q−1Dυυυ = D>Q−1
T∑
t=1

(
E[XXXt]−B E[XXXt−1]− f

)
(85)

Thus, the updated υυυ is

υυυj+1 =
1
T

(
D>uQ−1Du

)−1
D>uQ−1

T∑
t=1

(
x̃t −Bx̃t−1 − fu

)
(86)

and
uj+1 = fu + Duυυυj+1, (87)

If Q is diagonal, this will reduce to computing the shared free elements in u by
averaging over their values in the unconstrained u update matrix (equation 23.

The update equation requires that D>uQ−1Du is invertible, and it will be if
Q is a proper variance-covariance matrix (positive semi-definite) and Du is full
rank, as it will be if a proper variance-covariance matrix is being specified11 and
confounded elements are not being specified12. If Q has zeros on the diagonal
however (a partially deterministic model), this would no longer be the case. See
section 6 on the modifications to the update equation when there some of the
diagonal elements of Q are zero.

11For example, a variance-covariance matrix where all the values are equal is not valid; it’s
not positive semi-definite. Try taking the inverse of such a matrix; it won’t work.

12For example, if your Q matrix had a + b always appearing together then a + b can be
estimated but not a or b separately. These two parameters would be confounded.

27

4.2 The general a update equation

The derivation of the update equation for a with fixed and shared values is
completely analogous to the derivation for u. If a = fa + Daααα, where ααα is a
column vector of the estimated values then (with the a subscripts left of D and
f)

αααj+1 =
1
T

(
D>a R−1Da

)−1
D>a R−1

T∑
t=1

(
ỹt − Zx̃t − fa

)
(88)

The new a parameter is then

aj+1 = fa + Daαααj+1, (89)

If R is diagonal, this will reduce just updating the free elements in a using
their values from the unconstrained update equation. Again D>a R−1Da must
be invertible; see section 6 on the modifications to the update equation when
some of the diagonal elements of R are zero.

4.3 The general ξ update equation, stochastic initial state

When xxx0 is treated as stochastic with an unknown mean, the derivation of the
update equation for ξ with fixed and shared values is similar to the derivation
for u and a. Let ξ = fξ + Dξp, where p is a column vector of the estimated
values. Take the derivative of Ψ (using equation 5) with respect to p:

∂Ψ/∂p =
(
x̃>0 Λ−1 − ξ>Λ−1

)
D (90)

Replace ξ with f + Dp, set the left side to zero and transpose:

0 = D>
(
Λ−1x̃0 −Λ−1f + Λ−1Dp

)
(91)

Thus,
pj+1 =

(
D>ξ Λ−1Dξ

)−1
D>ξ Λ−1(x̃0 − fξ) (92)

and the new ξ is then,
ξj+1 = fξ + Dξpj+1, (93)

When the initial state is defined as at t = 1, replace x̃0 with x̃1 in equation 92.

28

4.4 The general ξ update equation, fixed xxx0

For the case where xxx0 is treated as fixed, i.e. as another parameter, take the
derivative of Ψ using equation (6):

∂Ψ/∂p = −1
2

(
− E[∂(XXX>1 Q−1B(f + Dp))/∂p]

− E[∂((B(f + Dp))>Q−1XXX1)/∂p] + E[∂((B(f + Dp))>Q−1(B(f + Dp)))/∂p]

+ E[∂((B(f + Dp))>Q−1u)/∂p] + E[∂(u>Q−1B(f + Dp))/∂p]
)

= −1
2

(
− E[∂(XXX>1 Q−1B(f + Dp))/∂p]

− E[∂((f + Dp)>B>Q−1XXX1)/∂p] + E[∂((f + Dp)>B>Q−1(B(f + Dp)))/∂p]

+ E[∂((f + Dp)>B>Q−1u)/∂p] + E[∂(u>Q−1B(f + Dp))/∂p]
)

(94)

After pulling the constants out of the expectations, we use relations (14) and
(16) to take the derivative:

∂Ψ/∂p = −1
2

(
− E[XXX1]>Q−1BD− E[XXX1]>Q−1BD

+ f>B>Q−1BD + f>B>Q−1BD

+ 2p>D>B>Q−1BD + u>Q−1BD + u>Q−1BD
) (95)

This can be reduced to

∂Ψ/∂p = E[XXX1]>Q−1BD− f>B>Q−1BD− p>D>B>Q−1BD− u>Q−1BD
(96)

To solve for p, set the left side to zero, transpose the whole equation, and then
cancel out D>B>Q−1BD by multiplying by its inverse on the left, and solve
for p.

p = (D>B>Q−1BD)−1D>B>Q−1(E[XXX1]− u−Bf) (97)

Thus, in terms of the Kalman filter/smoother output the new p for EM iteration
j + 1 is

pj+1 = (D>ξ B>Q−1BDξ)−1D>ξ B>Q−1(x̃1 − u−Bfξ) (98)

This equation requires that the inverse of D>ξ B>Q−1BDξ exists and it might
not if B has any all zero rows/columns. In that case, defining ξ ≡ xxx1 might
work instead (section 4.5).

29

4.5 The general ξ update equation, fixed xxx1

When the initial state is defined at t = 1 instead of t = 0, the derivation proceeds
as in section 4.4 but using the likelihood in section 3.10. In terms of the Kalman
smoother output the new ξ for EM iteration j + 1 when ξ ≡ xxx1 is

ξj+1 = (D>ξ (Z>R−1Z + B>Q−1B)Dξ)−1D>ξ
(Z>R−1(ỹ1 − a− fξ) + B>Q−1(x̃2 − u−Bfξ))

(99)

4.6 The general B update equation

The matrix B is rewritten as B = Bfixed +Bfree, thus vec(B) = f b+Dbβββ, where
βββ is the p × 1 column vector of the p estimated values, f b = vec(Bfixed) and
Dbβββ = vec(Bfree). Take the derivative of Ψ with respect to βββ; terms in Ψ that
do not involve B also do not involve βββ so they will equal 0 and drop out.

∂Ψ/∂βββ = −1
2

T∑
t=1

(
− E[∂(XXX>t Q−1BXXXt−1)/∂βββ]

− E[∂((BXXXt−1)>Q−1XXXt)/∂βββ] + E[∂((BXXXt−1)>Q−1(BXXXt−1))/∂βββ]

+ E[∂((BXXXt−1)>Q−1u)/∂βββ] + E[∂(u>Q−1BXXXt−1)/∂βββ]
) (100)

This needs to be rewritten as a function of βββ instead of B. Note that BXXXt−1 is
a column vector and use relation (74) to show that:

BXXXt−1 = vec(BXXXt−1) = Kb vec(B) = Kb(f b + Dbβββ),

where Kb = (XXX>t−1 ⊗ I)
(101)

Thus, ∂Ψ/∂βββ becomes (the b subscripts have been left off K, F and D):

∂Ψ/∂βββ = −1
2

T∑
t=1

(
− E[∂(XXX>t Q−1K(f + Dβββ))/∂βββ]

− E[∂((K(f + Dβββ))>Q−1XXXt)/∂βββ]

+ E[∂((K(f + Dβββ))>Q−1K(f + Dβββ))/∂βββ]

+ E[∂((K(f + Dβββ))>Q−1u)/∂βββ] + E[∂(u>Q−1K(f + Dβββ))/∂βββ]
)

(102)

After a bit of matrix algebra and using ∂(a>c)/∂a = ∂(c>a)/∂a, relation (13),
and that partial derivatives of constants equal 0, the above can be simplified to

∂Ψ/∂βββ =

− 1
2

T∑
t=1

(
− 2 E[∂(XXX>t Q−1KDβββ)/∂βββ] + 2 E[∂((Kf)>Q−1KDβββ)/∂βββ]

+ E[∂((KDβββ)>Q−1KDβββ)/∂βββ] + 2 E[∂(u>Q−1KDβββ)/∂βββ]
)

(103)

30

Using relations (13) and (17), using Q−1 = (Q−1)>, and getting rid of the −1/2,
we have

∂Ψ/∂βββ =
T∑
t=1

(
E[XXX>t Q−1KD]− E[(Kf)>Q−1KD]

− E[βββ>(KD)>Q−1(KD)]− E[u>Q−1KD]
) (104)

The left side can be set to 0 (a 1×p matrix) and the whole equation transposed,
giving:

0 =
T∑
t=1

(
E[(KD)>Q−1XXXt]− E[(KD)>Q−1Kf]

− E[(KD)>Q−1(KD)]βββ − E[(KD)>Q−1u]
) (105)

Replacing K with (XXX>t−1 ⊗ I), we have

0 =
T∑
t=1

(
E[((XXX>t−1 ⊗ I)D)>Q−1XXXt]− E[((XXX>t−1 ⊗ I)D)>Q−1(XXX>t−1 ⊗ I)f]

− E[((XXX>t−1 ⊗ I)D)>Q−1(XXX>t−1 ⊗ I)D]βββ − E[((XXX>t−1 ⊗ I)D)>Q−1u]
)

(106)

This looks daunting, but using relation (74) and noting that (A⊗B)> = (A>⊗
B>), we can simplify equation (106) using the following:

(XXX>t−1 ⊗ I)Q−1u = (XXXt−1 ⊗ I)Q−1u

= (XXXt−1 ⊗ I) vec(Q−1u), because Q−1u is a column vector

= vec(Q−1u(XXXt−1)>), using relation (74)

Similarly,
(XXX>t−1 ⊗ I)Q−1XXXt = vec(Q−1XXXtXXX

>
t−1)

Using relation (79):

(XXXt−1 ⊗ Im)>Q−1(XXX>t−1 ⊗ Im)f = (XXXt−1XXX
>
t−1 ⊗Q−1)f

Similarly,

(XXXt−1 ⊗ I)>Q−1(XXX>t−1 ⊗ I)Dβββ = (XXXt−1XXX
>
t−1 ⊗Q−1)Dβββ

Using these simplifications in equation (106), we get

0 =
T∑
t=1

(
E[D> vec(Q−1XXXtXXX

>
t−1)]− E[D>(XXXt−1XXX

>
t−1 ⊗Q−1)f]

− E[D>(XXXt−1XXX
>
t−1 ⊗Q−1)D]βββ − E[D> vec(Q−1uXXX>t−1)]

) (107)

31

Replacing the expectations with the Kalman smoother output (section 5.1), we
arrive at:

0 =
T∑
t=1

(
D> vec(Q−1P̃t,t−1)−D>(P̃t−1 ⊗Q−1)f

−D>(P̃t−1 ⊗Q−1)Dβββ −D> vec(Q−1u(x̃t−1)>)
) (108)

Solving for βββ,

βββj+1 =
(T∑
t=1

D>b (P̃t−1 ⊗Q−1)Db

)−1

D>b

(T∑
t=1

(
vec(Q−1P̃t,t−1)

− (P̃t−1 ⊗Q−1)f b − vec(Q−1ux̃>t−1)
)) (109)

This requires that D>b (P̃t−1 ⊗ Q−1)Db is invertible, and it should be since
(P̃t−1⊗Q−1) is invertible13 and Db will not have any all zero columns (all zero
rows are fine).

Combining βββj+1 with Bfixed, we arrive at the vec of the updated B matrix:

vec(Bj+1) = f b + Dbβββj+1, (110)

When there are no fixed or shared values, Bfixed equals zero and Db equals an
identity matrix. Equation (109) then reduces to the unconstrained form. To see
this take the vec of the unconstrained update equation for B and notice that
Q−1 can be factored out.

4.7 The general Z update equation

The derivation of the update equation for Z with fixed and shared values is
analogous to the derivation for B. The matrix Z is rewritten as Z = Zfixed+Zfree,
thus vec(Z) = fz+Dzζζζ, where ζζζ is the column vector of the p estimated values,
fz = vec(Zfixed) and Dzζζζ = vec(Zfree). With the z subscript dropped off D
and f , the update equation for Z is

ζζζj+1 =
(T∑
t=1

(D>z (P̃t ⊗R−1)Dz)
)−1

D>z

(T∑
t=1

(
vec(R−1ỹxt)

− (P̃t ⊗R−1)fz − vec(R−1ax̃>t)
)) (111)

Combining ζζζj+1 with Zfixed, we arrive at the vec of the updated Z matrix:

vec(Zj+1) = fz + Dzζζζj+1 (112)

This requires that D>z (P̃t ⊗R−1)Dz is invertible, and it should be since (P̃t ⊗
R−1) will normally be invertible14 and Dz has no all zero columns.

13If Q has zeros on the diagonal, the equation needs to be altered. See section 6.
14If R has zeros on the diagonal, the equation is altered; see section 6.

32

4.8 The general Q update equation

A general analytical solution for fixed and shared elements in Q is problematic
because the inverse of Q appears in the likelihood and because Q−1 cannot
always be rewritten as a function of vec(Q). It might be an option to use nu-
merical maximization of ∂Ψ/∂qi,j where qi,j is a free element in Q, but this will
slow down the algorithm enormously. However, in a few important special—yet
quite broad— cases, an analytical solution can be derived. The most general of
these special cases is a block-symmetric matrix with optional independent fixed
blocks (subsection 4.8.5). Indeed, all other cases (diagonal, block-diagonal, un-
constrained, equal variance-covariance) except one (a replicated block-diagonal)
are special cases of the blocked matrix with optional independent fixed blocks.

The general update equation for this case is

qqqj+1 =
1
T

(D>q Dq)−1D>q vec(S)

vec(Q)j+1 = fq + Dqqqqj+1

where S =
T∑
t=1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t +

BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

)
(113)

The matrices fq, Dq, and qqq have their standard definitions. The vec of Q is
written in the form of vec(Q) = fq+Dqqqq, where fq is a m2×1 column vector of
the fixed values including zero, Dq is the m2×p design matrix, and qqq is a column
vector of the p free values. This requires that (D>q Dq), which in a valid model
must be true; if is not true you have specified an invalid variance-covariance
structure since the implied variance-covariance matrix will not be full-rank and
thus not invertible and thus an invalid variance-covariance matrix.

Below I show how the Q update equation arises by working through a few
of the special cases. In these derivations the q subscript is left off the D and f
matrices.

4.8.1 Special case: diagonal Q matrix (with shared or unique pa-
rameters)

Let Q be a diagonal matrix with fixed and shared values. For example,

Q =

q1 0 0 0 0
0 f1 0 0 0
0 0 q2 0 0
0 0 0 f2 0
0 0 0 0 q2

Here, f ’s are fixed values (constants) and q’s are free parameters elements. The
vec of Q−1 can be written then as vec(Q−1) = f∗q + Dqq

∗q∗q∗, where f∗ is like fq

33

but with the corresponding i-th non-zero fixed values replaced by 1/fi and q∗q∗q∗

is a column vector of 1 over the qi values. For the example above,

q∗q∗q∗ =
[
1/q1

1/q2

]
Take the partial derivative of Ψ with respect to q∗q∗q∗. We can do this because

Q−1 is diagonal and thus each element of q∗q∗q∗ is independent of the other elements;
otherwise we would not necessarily be able to vary one element of q∗q∗q∗ while
holding the other elements constant.

∂Ψ/∂q∗q∗q∗ = −1
2

T∑
t=1

∂

(
E[XXX>t Q−1XXXt]− E[XXX>t Q−1BXXXt−1]

− E[(BXXXt−1)>Q−1XXXt]− E[XXX>t Q−1u]

− E[u>Q−1XXXt] + E[(BXXXt−1)>Q−1BXXXt−1]

+ E[(BXXXt−1)>Q−1u] + E[u>Q−1BXXXt−1] + u>Q−1u
)
/∂q∗q∗q∗

− ∂
(T

2
log |Q|

)
/∂q∗q∗q∗

(114)

Using the same vec operations as in the derivations for B and Z, pull Q−1

out from the middle and replace the expectations with the Kalman smoother
output.15

∂Ψ/∂q∗q∗q∗ = −1
2

T∑
t=1

∂

(
E[XXX>t ⊗XXX

>
t]− E[XXX>t ⊗ (BXXXt−1)>]− E[(BXXXt−1)> ⊗XXX>t]

− E[XXX>t ⊗ u>]− E[u> ⊗XXX>t] + E[(BXXXt−1)> ⊗ (BXXXt−1)>]

+ E[(BXXXt−1)> ⊗ u>] + E[u> ⊗ (BXXXt−1)>] + (u> ⊗ u>)
)

vec(Q−1)/∂q∗q∗q∗

− ∂
(
T

2
log |Q|

)
/∂q∗q∗q∗

= −1
2

T∑
t=1

∂
(

vec(S)>
)

vec(Q−1)/∂q∗q∗q∗ + ∂
(T

2
log |Q−1|

)
/∂q∗q∗q∗

where S =
T∑
t=1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − ux̃>t +

BP̃t−1B> + Bx̃t−1u> + ux̃>t−1B
> + uu>

)
(115)

Note, I have replaced log |Q| with − log |Q−1|. The determinant of a diagonal

15Another, more common, way to do this is to use a “trace trick”, trace(a>Ab) =
trace(Aba>), to pull Q−1 out.

34

matrix is the product of its diagonal elements. Thus,

∂Ψ/∂q∗q∗q∗ = −
(

1
2

vec(S)>(f∗ + Dq∗q∗q∗)

− T

2
(log(f∗1) + log(f∗2)...k log(q∗1) + l log(q∗2)...)

)
/∂q∗q∗q∗

(116)

where k is the number of times q1 appears on the diagonal of Q and l is the
number of times q2 appears, etc. Taking the derivatives,

∂Ψ/∂q∗q∗q∗ ==
1
2
D> vec(S)− T

2
(log(f∗1) + ...k log(q∗1) + l log(q∗2)...)/∂q∗q∗q∗

=
1
2
D> vec(S)− T

2
D>Dqqq

(117)

D>D is a p× p matrix with k, l, etc. along the diagonal and thus is invertible;
as usual, p is the number of free elements in Q. Set the left side to zero (a 1× p
matrix of zeros) and solve for qqq. This gives us the update equation for Q:

qqqj+1 =
1
T

(D>D)−1D> vec(S)

vec(Q)j+1 = f + Dqqqj+1

(118)

where S is defined in equation (115) and, as usual, D and f are the parameter
specific matrices. In this case, D = Dq and f = fq.

4.8.2 Special case: Q with one variance and one covariance

Q =

α β β β
β α β β
β β α β
β β β α

 Q−1 =

f(α, β) g(α, β) g(α, β) g(α, β)
g(α, β) f(α, β) g(α, β) g(α, β)
g(α, β) g(α, β) f(α, β) g(α, β)
g(α, β) g(α, β) g(α, β) f(α, β)

This is a matrix with a single shared variance parameter on the diagonal and a
single shared covariance on the off-diagonals. The derivation is the same as for
the diagonal case, until the step involving the differentiation of log |Q−1|:

∂Ψ/∂q∗q∗q∗ = ∂

(
− 1

2

T∑
t=1

(
vec(S)>

)
vec(Q−1) +

T

2
log |Q−1|

)
/∂q∗q∗q∗ (119)

It does not make sense to take the partial derivative of log |Q−1| with respect to
vec(Q−1) because many elements of Q−1 are shared so it is not possible to fix
one element while varying another. Instead, we can take the partial derivative of
log |Q−1| with respect to g(α, β) which is

∑
{i,j}∈setg

∂ log |Q−1|/∂q∗q∗q∗i,j . Set g is
those i, j values where q∗q∗q∗ = g(α, β). Because g() and f() are different functions
of both α and β, we can hold one constant while taking the partial derivative
with respect to the other (well, presuming there exists some combination of α

35

and β that would allow that). But if we have fixed values on the off-diagonal,
this would not be possible. In this case (see below), we cannot hold g() constant
while varying f() because both are only functions of α:

Q =

α f f f
f α f f
f f α f
f f f α

 Q−1 =

f(α) g(α) g(α) g(α)
g(α) f(α) g(α) g(α)
g(α) g(α) f(α) g(α)
g(α) g(α) g(α) f(α)

Taking the partial derivative of log |Q−1| with respect to q∗q∗q∗ =

[f(α,β)
g(α,β)

]
, we

arrive at the same equation as for the diagonal matrix:

∂Ψ/∂q∗q∗q∗ =
1
2
D> vec(S)− T

2
D>Dqqq (120)

where again D>D is a p× p diagonal matrix with the number of times f(α, β)
appears in element (1, 1) and the number of times g(α, β) appears in element
(2, 2) of D; p = 2 here since there are only 2 free parameters in Q.

Setting to zero and solving for q∗q∗q∗ leads to the exact same update equation
as for the diagonal Q, namely equation (118) in which fq = 0 since there are no
fixed values.

4.8.3 Special case: a block-diagonal matrices with replicated blocks

Because these operations extend directly to block-diagonal matrices, all results
for individual matrix types can be extended to a block-diagonal matrix with
those types:

Q =

B1 0 0
0 B2 0
0 0 B3

where Bi is a matrix from any of the allowed matrix types, such as unconstrained,
diagonal (with fixed or shared elements), or equal variance-covariance. Blocks
can also be shared:

Q =

B1 0 0
0 B2 0
0 0 B2

but the entire block must be identical (B2 ≡ B3); one cannot simply share
individual elements in different blocks. Either all the elements in two (or 3, or
4...) blocks are shared or none are shared.

This is ok:
c d d 0 0 0
d c d 0 0 0
d d c 0 0 0
0 0 0 c d d
0 0 0 d c d
0 0 0 d d c

36

This is not ok:
c d d 0 0
d c d 0 0
d d c 0 0
0 0 0 c d
0 0 0 d c

 nor

c d d 0 0 0
d c d 0 0 0
d d c 0 0 0
0 0 0 c e e
0 0 0 e c e
0 0 0 e e c

The first is bad because the blocks are not identical; they need the same dimen-
sions as well as the same values. The second is bad because again the blocks
are not identical; all values must be the same.

4.8.4 Special case: a symmetric blocked matrix

The same derivation translates immediately to blocked symmetric Q matrices
with the following form:

Q =

 E1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

where the E are as above matrices with one value on the diagonal and another
on the off-diagonals (no zeros!). The C matrices have only one free value or
are all zero. Some C matrices can be zero while are others are non-zero, but a
individual C matrix cannot have a combination of free values and zero values;
they have to be one or the other. Also the whole matrix must stay block
symmetric. Additionally, there can be shared E or C matrices but the whole
matrix needs to stay block-symmetric. Here are the forms that E and C can
take:

Ei =

α β β β
β α β β
β β α β
β β β α

 Ci =

χ χ χ χ
χ χ χ χ
χ χ χ χ
χ χ χ χ

 or

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The following are block-symmetric: E1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

 and

E C C
C E C
C C E

and

 E1 C1 C1,2

C1 E1 C1,2

C1,2 C1,2 E2

The following are NOT block-symmetric: E1 C1,2 0

C1,2 E2 C2,3

0 C2,3 E3

 and

E1 0 C1

0 E1 C2

C1 C2 E2

 and

 E1 0 C1,2

0 E1 C1,2

C1,2 C1,2 E2

37

and

 U1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

 and

 D1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

In the first row, the matrices have fixed values (zeros) and free values (covari-
ances) on the same off-diagonal row and column. That is not allowed. If there
is a zero on a row or column, all other terms on the off-diagonal row and column
must be also zero. In the second row, the matrix is not block-symmetric since
the upper corner is an unconstrained block (U1) in the left matrix and diagonal
block (D1) in the right matrix instead of a equal variance-covariance matrix (E).

4.8.5 The general case: a block-diagonal matrix with general blocks

In it’s most general form, Q is allowed to have a block-diagonal form where the
blocks, here called G are any of the previous allowed cases. No shared values
across G’s; shared values are allowed within G’s.

Q =

G1 0 0
0 G2 0
0 0 G3

The G’s must be one of the special cases listed above: unconstrained, diag-
onal (with fixed or shared values), equal variance-covariance, block diagonal
(with shared or unshared blocks), and block-symmetric (with shared or un-
shared blocks). Fixed blocks are allowed, but then the covariances with the free
blocks must be zero:

Q =

F 0 0 0
0 G1 0 0
0 0 G2 0
0 0 0 G3

Fixed blocks must have only fixed values (zero is a fixed value) but the fixed
values can be different from each other. The free blocks must have only free
values (zero is not a free value).

4.9 The general R update equation

The R update equation for blocked symmetric matrices with optional indepen-
dent fixed blocks is completely analogous to the Q equation. Thus if R has the
form

R =

F 0 0 0
0 G1 0 0
0 0 G2 0
0 0 0 G3

Again the G’s must be one of the special cases listed above: unconstrained,
diagonal (with fixed or shared values), equal variance-covariance, block diagonal
(with shared or unshared blocks), and block-symmetric (with shared or unshared

38

blocks). Fixed blocks are allowed, but then the covariances with the free blocks
must be zero

The update equation is

ρρρj+1 =
1
T

(D>r Dr)−1D>r vec
(T∑
t=1

Rt,j+1

)
vec(R)j+1 = fr + Drρρρj+1

(121)

The Rt,j+1 used at time step t in equation (121) is the term that appears in
the summation in the unconstrained update equation with no missing values
(equation 52):

Rt,j+1 =
(

Õt − ỹxtZ
> − Zỹx>t − ỹta

> − aỹ>t

+ ZP̃tZ> + Zx̃ta> + ax̃>t Z> + aa>
) (122)

5 Computing the expectations in the update equa-
tions

For the update equations, we need to compute the expectations of XXXt and YYY t
and their products conditioned on 1) the observed data YYY (1) = yyy(1) and 2)
the parameters at time t, Θj . This section shows how to compute these ex-
pectations. Throughout the section, I will normally leave off the conditional
YYY (1) = yyy(1),Θj when specifying an expectation. Thus any E[] appearing with-
out its conditional is conditioned on YYY (1) = yyy(1),Θj . However if there are
additional or different conditions those will be shown. Also all expectations are
over the joint distribution of XY unless explicitly specified otherwise.

Before commencing, we need some notation for the observed and unobserved
elements of the data. The n× 1 vector yyyt denotes the potential observations at
time t. If some elements of yyyt are missing, that means some elements are equal
to NA (or some other missing values marker):

yyyt =

y1

NA
y3

y4

NA
y6

 (123)

We denote the non-missing observations as yyyt(1) and the missing observations as
yyyt(2). Similar to yyyt, YYY t denotes all the YYY random variables at time t. The YYY t’s
with an observation are YYY t(1) and those without an observation are denoted
YYY t(2).

39

Let Ω(1)
t be the matrix that extracts only YYY t(1) from YYY t and Ωt(2) be the

matrix that extracts only YYY t(2). For the example above,

YYY t(1) = Ω(1)
t YYY t, Ω(1)

t =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

YYY t(2) = Ω(2)

t YYY t, Ω(2)
t =

[
0 1 0 0 0 0
0 0 0 0 1 0

] (124)

We will define another set of matrices that zeros out the missing or non-
missing values. Let I(1)

t denote a diagonal matrix that zeros out the YYY t(2) in
YYY t and I(2)

t denote a matrix that zeros out the YYY t(1) in YYY t. For the example
above,

I(1)
t = (Ω(1)

t)>Ω(1)
t =

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 and

I(2)
t = (Ω(2)

t)>Ω(2)
t =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 .
(125)

5.1 Expectations involving only XXX t

The Kalman smoother provides the expectations involving only XXXt conditioned
on all the data from time 1 to T .

x̃t = E[XXXt] (126a)

Ṽt = var[XXXt] (126b)

Ṽt,t−1 = cov[XXXt,XXXt−1] (126c)

From x̃t, Ṽt, and Ṽt,t−1, we compute

P̃t = E[XXXtXXX
>
t] = Ṽt + x̃tx̃

>
t (126d)

P̃t,t−1 = E[XXXtXXX
>
t−1] = Ṽt,t−1 + x̃tx̃

>
t−1 (126e)

The P̃t and P̃t,t−1 equations arise from the computational formula for variance
(equation 11). Note the smoother is different than the Kalman filter as the filter
does not provide the expectations of XXXt conditioned on all the data (time 1 to
T) but only on the data up to time t.

40

The classic Kalman smoother is an algorithm to compute these expectations
conditioned on no missing values in yyy. However, the algorithm can be easily
modified to give the expected values of XXX conditioned on the incomplete data,
YYY (1) = yyy(1) (Shumway and Stoffer, 2006, sec. 6.4, eqn 6.78, p. 348). In
this case, the usual filter and smoother equations are used with the following
modifications to the parameters and data used in the equations. If the i-th
element of yyyt is missing, zero out the i-th rows in yyyt, a and Z. Thus if the 2nd
and 5th elements of yyyt are missing,

yyyt =

y1

0
y3

y4

0
y6

 , at =

a1

0
a3

a4

0
a6

 , Zt =

z1,1 z1,2 ...
0 0 ...
z3,1 z3,2 ...
z4,1 z4,2 ...
0 0 ...
z6,1 z6,2 ...

 (127)

The R parameter used in the filter equations is also modified. We need to
zero out the covariances between the non-missing, yyyt(1), and missing, yyyt(2),
data. For the example above, if

R =

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r4,1 r4,2 r4,3 r4,4 r4,5 r4,6

r5,1 r5,2 r5,3 r5,4 r5,5 r5,6

r6,1 r6,2 r6,3 r6,4 r6,5 r6,6

 (128)

then the R we use at time t, will have zero covariances between the non-missing
elements 1,3,4,6 and the missing elements 2,5:

Rt =

r1,1 0 r1,3 r1,4 0 r1,6

0 r2,2 0 0 r2,5 0
r3,1 0 r3,3 r3,4 0 r3,6

r4,1 0 r4,3 r4,4 0 r4,6

0 r5,2 0 0 r5,5 0
r6,1 0 r6,3 r6,4 0 r6,6

 (129)

Thus, the data and parameters used in the filter and smoother equations are

yyyt = I(1)
t yyyt

at = I(1)
t a

Zt = I(1)
t Z

Rt = I(1)
t RI(1)

t + I(2)
t RI(2)

t

(130)

at, Zt and Rt only are used in the Kalman filter and smoother. They are
not used in the EM update equations. However when coding the algorithm, it
is convenient to replace the NAs (or whatever the missing values placeholder
is) in yyyt with zero so that there is not a problem with NAs appearing in the
computations.

41

5.2 Expectations involving YYY t

First, replace the missing values in yyyt with zeros16 and then the expectations
are given by the following equations. The derivations for these equations are
given in the subsections to follow.

ỹt = E[YYY t] = yyyt −∇t(yyyt − Zx̃t − a) (131a)

Õt = E[YYY tYYY
>
t] = I(2)

t (∇tR +∇tZṼtZ>∇>t)I(2)
t + ỹtỹ

>
t (131b)

ỹxt = E[YYY tXXX
>
t] = ∇tZṼt + ỹtx̃

>
t (131c)

ỹxt,t−1 = E[YYY tXXX
>
t−1] = ∇tZṼt,t−1 + ỹtx̃

>
t−1 (131d)

where ∇t = I−R(Ω(1)
t)>(Ω(1)

t R(Ω(1)
t)>)−1Ω(1)

t (131e)

and I(2)
t = (Ω(2)

t)>Ω(2)
t (131f)

If yyyt is all missing, Ω(1)
t is a 0×nmatrix, and we define (Ω(1)

t)>(Ω(1)
t R(Ω(1)

t)>)−1Ω(1)
t

to be a n×nmatrix of zeros. If R is diagonal, then R(Ω(1)
t)>(Ω(1)

t R(Ω(1)
t)>)−1Ω(1)

t =
I(1)
t and ∇t = I(2)

t . This will mean that in ỹt the yyyt(2) are given by Zx̃t + a, as
expected when yyyt(1) and yyyt(2) are independent.

If there are zeros on the diagonal of R (section 6), the definition of ∆t is
changed slightly from that shown in equation 131. Let f(r)

t be the matrix that
extracts the elements of yyyt where yyyt(i) is not missing and R(i, i) is not zero.
Then

∇t = I−R(f(r)
t)>(f(r)

t R(f(r)
t)>)−1f(r)

t (132)

5.3 Derivation of the expected value of YYY t

In the MARSS equation, the observation errors are denoted vt. This is a specific
realization from a random variable Vt that is distributed multivariate normal
with mean 0 and variance R. Vt is not to be confused with Ṽt in equation 126,
which is unrelated17 to Vt. If there are no missing values, then we condition on
YYY t = yyyt and

E[YYY t|YYY (1) = yyy(1)] = E[YYY t|YYY t = yyyt] = yyyt (133)

If there are no observed values, then

E[YYY t|YYY (1) = yyy(1)] = E[YYY t] = E[ZXXXt + a + Vt] = Zx̃t + a (134)

If only some of the YYY t are observed, then we use the conditional probability for
a multivariate normal distribution (here shown for a bivariate case):

If,
[
Y1

Y2

]
∼ MVN

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(135)

16The only reason is so that in your computer code, if you use NA or NaN as the missing
value marker, NA-NA=0 and 0*NA=0 rather than NA.

17I apologize for the confusing notation, but Ṽt and vt are somewhat standard in the
MARSS literature and it is standard to use a capital letter to refer to a random variable.
Thus Vt would be the standard way to refer to the random variable associated with vt.

42

Then,

(Y1|Y1 = y1) = y1, and
(Y2|Y1 = y1) ∼ MVN(µ̄, Σ̄), where

µ̄ = µ2 + Σ21Σ−1
11 (y1 − µ1)

Σ̄ = Σ22 − Σ21Σ−1
11 Σ12

(136)

From this property, we can write down the distribution of YYY t conditioned on
YYY t(1) = yyyt(1) and XXXt = xxxt:[

YYY t(1)|XXXt = xxxt
YYY t(2)|XXXt = xxxt

]
∼ MVN

([
Ω(1)
t (Zxxxt + a)

Ω(2)
t (Zxxxt + a)

]
,

[
Rt,11 Rt,12

Rt,21 Rt,22

])
(137)

Thus,

(YYY t(1)|YYY t(1) = yyyt(1),XXXt = xxxt) = Ω(1)
t yyyt and

(YYY t(2)|YYY t(1) = yyyt(1),XXXt = xxxt) ∼ MVN(µ̈, Σ̈) where

µ̈ = Ω(2)
t (Zxxxt + a) + Rt,21(Rt,11)−1Ω(1)

t (yyyt − Zxxxt − a)

Σ̈ = Rt,22 −Rt,21(Rt,11)−1Rt,12

(138)

Note that since we are conditioning on XXXt = xxxt, we can replace YYY by YYY t in
the conditional:

E[YYY t|YYY (1) = yyy(1),XXXt = xxxt] = E[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt].

From this and the distributions in equation (138), we can write down ỹt =
E[YYY t|YYY (1) = yyy(1),Θj]:

ỹt = EXY [YYY t|YYY (1) = yyy(1)]

=
∫
xxxt

∫
yyyt

yyytf(yyyt|yyyt(1),xxxt)dyyytf(xxxt)dxxxt

= EX [EY |x[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt]]
= EX [yyyt −∇t(yyyt − ZXXXt − a)]
= yyyt −∇t(yyyt − Zx̃t − a)

where ∇t = I−R(Ω(1)
t)>(Rt,11)−1Ω(1)

t

(139)

(Ω(1)
t)>(Rt,11)−1Ω(1)

t is a n×n matrix with 0s in the non-(11) positions. If the
k-th element of yyyt is observed, then k-th row and column of ∇t will be zero.
Thus if there are no missing values at time t, ∇t = I − I = 0. If there are no
observed values at time t, ∇t will reduce to I.

43

5.4 Derivation of the expected value of YYY tYYY
>
t

The following outlines a18 derivation. If there are no missing values, then we
condition on YYY t = yyyt and

E[YYY tYYY
>
t |YYY (1) = yyy(1)] = E[YYY tYYY

>
t |YYY t = yyyt]

= yyytyyy
>
t .

(140)

If there are no observed values at time t, then

E[YYY tYYY
>
t]

= var[ZXXXt + a + Vt] + E[ZXXXt + a + Vt] E[ZXXXt + a + Vt]>

= var[Vt] + var[ZXXXt] + (E[ZXXXt + a] + E[Vt])(E[ZXXXt + a] + E[Vt])>

= R + ZṼtZ> + (Zx̃t + a)(Zx̃t + a)>

(141)

When only some of the YYY t are observed, we use again the conditional prob-
ability of a multivariate normal (equation 135). From this property, we know
that

varY |x[YYY t(2)YYY t(2)>|YYY t(1) = yyyt(1),XXXt = xxxt] = Rt,22 −Rt,21(Rt,11)−1Rt,12,

varY |x[YYY t(1)|YYY t(1) = yyyt(1),XXXt = xxxt] = 0
and covY |x[YYY t(1),YYY t(2)|YYY t(1) = yyyt(1),XXXt = xxxt] = 0

Thus varY |x[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt]

= (Ω(2)
t)>(Rt,22 −Rt,21(Rt,11)−1Rt,12)Ω(2)

t

= (Ω(2)
t)>(Ω(2)

t R(Ω(2)
t)> −Ω(2)

t R(Ω(1)
t)>(Rt,11)−1Ω(1)

t R(Ω(2)
t)>)Ω(2)

t

= I(2)
t (R−R(Ω(1)

t)>(Rt,11)−1Ω(1)
t R)I(2)

t

= I(2)
t ∇tRI(2)

t

(142)

The I(2)
t bracketing both sides is zero-ing out the rows and columns correspond-

ing to the yyyt(1) values.
Now we can compute the EXY [YYY tYYY

>
t |YYY (1) = yyy(1)]. The subscripts are

added to the E to emphasize that we are breaking the multivariate expectation

18The following derivations are painfully ugly, but appear to work. There are surely more
elegant ways to do this; at least, there must be more elegant notations.

44

into an inner and outer expectation.

Õt = EXY [YYY tYYY
>
t |YYY (1) = yyy(1)] = EX [EY |x[YYY tYYY

>
t |YYY t(1) = yyyt(1),XXXt = xxxt]]

= EX
[

varY |x[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt]

+ EY |x[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt] EY |x[YYY t|YYY t(1) = yyyt(1),XXXt = xxxt]>
]

= EX [I(2)
t ∇tRI(2)

t] + EX [(yyyt −∇t(yyyt − ZXXXt − a))(yyyt −∇t(yyyt − ZXXXt − a))>]

= I(2)
t ∇tRI(2)

t + varX
[
yyyt −∇t(yyyt − ZXXXt − a)

]
+ EX [yyyt −∇t(yyyt − ZXXXt − a)] EX [yyyt −∇t(yyyt − ZXXXt − a)]>

= I(2)
t ∇tRI(2)

t + I(2)
t ∇tZṼtZ>∇>t I(2)

t + ỹtỹ
>
t

(143)

Thus,
Õt = I(2)

t (∇tR +∇tZṼtZ>∇>t)I(2)
t + ỹtỹ

>
t (144)

5.5 Derivation of the expected value of YYY tXXX
>
t

If there are no missing values, then we condition on YYY t = yyyt and

E[YYY tXXX
>
t |YYY (1) = yyy(1)] = yyyt E[XXX>t] = yyytx̃

>
t (145)

If there are no observed values at time t, then

E[YYY tXXX
>
t |YYY (1) = yyy(1)]

= E[(ZXXXt + a + Vt)XXX
>
t]

= E[ZXXXtXXX
>
t + aXXX>t + VtXXX

>
t]

= ZP̃t + ax̃>t + cov[Vt,XXXt] + E[Vt] E[XXXt]>

= ZP̃t + ax̃>t

(146)

Note that Vt andXXXt are independent (equation 1). E[Vt] = 0 and cov[Vt,XXXt] =
0.

Now we can compute the EXY [YYY tXXX
>
t |YYY (1) = yyy(1)].

ỹxt = EXY [YYY tXXX
>
t |YYY (1) = yyy(1)]

= cov[YYY t,XXXt|YYY t(1) = yyyt(1)] + EXY [YYY t|YYY (1) = yyy(1)] EXY [XXX>t |YYY (1) = yyy(1)]>

= cov[yyyt −∇t(yyyt − ZXXXt − a) + V∗t ,XXXt] + ỹtx̃
>
t

= cov[yyyt,XXXt]− cov[∇tyyyt,XXXt] + cov[∇tZXXXt,XXXt] + cov[∇ta,XXXt]

+ cov[V∗t ,XXXt] + ỹtx̃
>
t

= 0− 0 +∇tZṼt + 0 + 0 + ỹtx̃
>
t

= ∇tZṼt + ỹtx̃
>
t

(147)

45

This uses the computational formula for covariance: E[YYYXXX>] = cov[YYY ,XXX] +
E[YYY] E[XXX]>. V∗t is a random variable with mean 0 and variance Rt,22−Rt,21(Rt,11)−1Rt,12

from equation (138). V∗t andXXXt are independent of each other, thus cov[V∗t ,XXX
>
t] =

0.

5.6 Derivation of the expected value of YYY tXXX
>
t−1

The derivation of E[YYY tXXX
>
t−1] is similar to the derivation of E[YYY tXXX

>
t−1]:

ỹxt = EXY [YYY tXXX
>
t−1|YYY (1) = yyy(1)]

= cov[YYY t,XXXt−1|YYY t(1) = yyyt(1)] + EXY [YYY t|YYY (1) = yyy(1)] EXY [XXX>t−1|YYY (1) = yyy(1)]>

= cov[yyyt −∇t(yyyt − ZXXXt − a) + V∗t ,XXXt−1] + ỹtx̃
>
t−1

= cov[yyyt,XXXt−1]− cov[∇tyyyt,XXXt−1] + cov[∇tZXXXt,XXXt−1]

+ cov[∇ta,XXXt−1] + cov[V∗t ,XXXt−1] + ỹtx̃
>
t−1

= 0− 0 +∇tZṼt,t−1 + 0 + 0 + ỹtx̃
>
t−1

= ∇tZṼt,t−1 + ỹtx̃
>
t−1

(148)

6 Degenerate variance modifications

It is possible that the model has deterministic and probabilistic elements; math-
ematically this means that one or the other of R or Q have zeros on the diagonal
in which case some of the observation or state processes are deterministic. As-
suming the model is solvable (one solution and not over-determined), we can
modify the Kalman smoother and EM algorithm to handle models with deter-
ministic elements. The motivation behind the degenerate variance modification
is that we want to use one set of EM update equations for all models in the
MARSS class—regardless of whether they are partially or fully degenerate. The
notation here is painful, but the actual math is not difficult to implement.

As an example of a solvable versus unsolvable model, consider the following.
If

R =

0 0 0 0
0 a 6= 0 0 0
0 0 b 6= 0 0
0 0 0 0

 , (149)

then following are bad versus ok Z matrices.

Zbad =

c d 0

z(2, 1) z(2, 2) z(2, 3)
z(3, 1) z(3, 1) z(3, 1)
c d 0

 , Zok =

c 0 0

z(2, 1) z(2, 2) z(2, 3)
z(3, 1) z(3, 1) z(3, 1)
c d 6= 0 0

 (150)

46

Because yt(1) and yt(4) have zero observation variance, the first Z reduces to
this for xt(1) and xt(2): [

yt(1)
yt(4)

]
=
[
cxt(1) + dxt(2)
cxt(1) + dxt(2)

]
(151)

and since yt(1) 6= yt(4), potentially, that is not solvable. The second Z reduces
to [

yt(1)
yt(4)

]
=
[

cxt(1)
cxt(1) + dxt(4)

]
(152)

and that is solvable for any yt(1) and yt(4) combination. Notice that in the
latter case, xt(1) and xt(2) are fully specified by yt(1) and yt(4). This property
will be used below to deal with numerical errors that crop up when diagonal
elements of R are equal to zero.

6.1 Kalman filter and smoother modifications

In principle, when one of the Q or R variances is zero19, the standard Kalman
filter/smoother equations would still work and provide the correct state outputs
and likelihood. In practice however errors will be generated if one passes a
variance matrix with zeros on the diagonal because under certain situations,
one of the matrix inverses will involve a matrix with a zero on the diagonal
in the Kalman filter/smoother equations and this will lead to an the computer
code throwing an error.

When R has zeros on the diagonal, problems arise in the Kalman update
part of the Kalman filter. The Kalman gain20 is

Kt = Vt−1
t Z>t (ZtVt−1

t Z>t + Rt)−1 (153)

Here, Zt is the missing values modified Z matrix with the i-th rows zero-ed out
if the i-th element of yyyt is missing (section 5.1, equation 127). Thus if the i-th
element of yyyt is missing and the (i, i) element of R is zero, the (i, i) element of
(ZtVt−1

t Z>t + Rt) will be zero also and one cannot take its inverse. In addition,
if the initial value xxx1 is treated as fixed but unknown then V0

1 will be a m×m
matrix of zeros. Again in this situation (ZtVt−1

t Z>t +Rt) will have zeros at any
(i, i) elements where R is also zero.

The first case, where zeros on the diagonal arise due to missing values in
the data, can be solved using the matrix which pulls out the rows and columns
corresponding to the non-missing values (Ω(1)

t). Replace
(
ZtVt−1

t Z>t + Rt

)−1

in equation (153) with

(Ω(1)
t)>

(
Ω(1)
t (ZtVt−1

t Z>t + Rt)(Ω
(1)
t)>

)−1
Ω(1)
t (154)

19The corresponding covariances will also be zero.
20Refer to Shumway and Stoffer, e.g., for the Kalman filter equations. I am skipping over

that to just show the changes to the recursion equations.

47

Wrapping in Ω(1)
t (Ω(1)

t)> gets rid of all the zero rows/columns in ZtVt−1
t Z>t +

Rt, and the matrix is reassembled with the zero rows/columns reinserted by
wrapping in (Ω(1)

t)>Ω(1)
t . This works because Rt is the missing values modified

R (section 1.3) and is block diagonal across the i and non-i rows/columns, and
Zt has the i-columns zero-ed out. Thus removing the i columns and rows before
taking the inverse has no effect on the product Zt(...)−1. When V0

1 = 0, set
K1 = 0 without computing the inverse (see equation 153 where V0

1 appears on
the left).

There is also a numerical issue to deal with. When the (i, i) elements of R are
zero, some of the elements of xxxt may be completely specified (fully known) given
yyyt. Let’s call these fully known elements of xxxt, the k-th elements. In this case,
the k-th row and column of Vt

t must be zero because given yt(i), xt(k) is known
(is fixed) and its variance, Vt

t(k, k), is zero. Because Kt is computed using a
numerical estimate of the inverse, the standard Vt

t update equation (which uses
Kt) will cause these elements to be close to zero but not precisely zero, and they
may even be slightly negative on the diagonal. This will cause serious problems
when the Kalman filter output is passed on to the EM algorithm. Thus after
Vt
t is computed using the normal Kalman update equation, we will want to

explicitly zero out the k rows and columns in the filter.
When Q has zeros on the diagonal, then we might also have similar numerical

errors in J in the Kalman smoother. The J equation21 is

Jt = Vt−1
t−1B

>(Vt−1
t)−1

where Vt−1
t = BVt−1

t−1B
> + Q

(155)

If Q has zeros on the diagonal, the corresponding Jt elements become:

Jt = Vt−1
t−1B

>(BVt−1
t−1B

>)−1

= Vt−1
t−1B

>(B>)−1(Vt−1
t−1)−1B−1

= B−1

(156)

Note when Λ = 0 and Q = 0, J0 could be set to 0 or B−1.

6.2 EM algorithm modifications

The constrained update equations for Q and R (either diagonal w/o missing
values or non-diagonal with no missing values) work fine because they deal with
fixed values (in this case, zeros) and the derivation does not involve any inverses
of non-invertible matrices. However if R is non-diagonal and there are missing
values, then the R update equation involves ỹt, and that will involve the inverse
of R11 (section 5.2), which might have zeros on the diagonal. In that case, use
the ∇t modification that deals with zeros on the diagonal of R (equation 132).

21Again, refer to Shumway and Stoffer for the Kalman filter recursions.

48

6.2.1 Modified likelihood for partially deterministic models

Let R+ be the sub-setted positive R matrix. For example, if

R =

1 0 .2
0 0 0
.2 0 1

 , then R+ =
[

1 .2
.2 1

]
. (157)

Let Ω+
r be a p × n matrix that extracts the p non-zero rows from R, and can

extract R+ from R. The diagonal matrix (Ω+
r)>Ω+

r ≡ I+
r zero’s out the zero

row in R (and any n× 1 row vector. For the example above,

R+ = Ω+
r R(Ω+

r)>

yyy+
t = Ω+

r yyyt

Ω+
r =

[
1 0 0
0 0 1

]
I+
r = (Ω+

r)>Ω+
r =

1 0 0
0 0 0
0 0 1

 (158)

Let Ω(0)
r be a (n− p)× n matrix that extracts the n− p zero rows from R.

For the example above,

R(0) = Ω(0)
r R(Ω(0)

r)>

yyy
(0)
t = Ω(0)

r yyyt

Ω(0)
r =

[
0 1 0

]
I(0)
r = (Ω(0)

r)>Ω(0)
r =

0 0 0
0 1 0
0 0 0

 (159)

Similarly, Ω+
q extracts the non-zero rows from Q and Ω(0)

q extracts the zero
rows.

Using these definitions, we can rewrite the MARSS model by separating out
the deterministic parts (Q = 0):

xxx
(0)
t = Ω(0)

q xxxt = Ω(0)
q Bxxxt−1 + Ω(0)

q u

xxx+
t = Ω+

q xxxt = Ω+
q Bxxxt−1 + Ω+

q u + w+
t

w+
t ∼ MVN(0,Q+)
xxx0 ∼ MVN(ξ,Λ)

yyy
(0)
t = Ω(0)

r yyyt = Ω(0)
r (ZI+

q xxxt + Z(Ω(0)
q)>Ω(0)

q (Bxxxt−1 + u) + a)

yyy+
t = Ω+

q yyyt = Ω+
q (ZI+

q xxxt + ZI(0)
q (Bxxxt−1 + u) + a) + v+

t

v+
t ∼ MVN(0,R+)

(160)

In order for this to be solvable, we require that Ω(0)
r ZI(0)

q is all zeros so that
B and u do not appear in the yyy(0) equation, and then they disappear in the
yyy(0) equation as shown above. That is, if state process xi (in xxx) is deterministic

49

(0 process variance), then no observation processes y in yyy that involves that
xi (through Z) shall have 0 observation variance. Also notice that Ω(0)

r Z and
Ω(0)
r a appear in the yyy(0) equation and not in the yyy+ equation. This means that

Ω(0)
r Z and Ω(0)

r a cannot be estimated but must be fixed terms.
Summarizing, this equation becomes

xxx
(0)
t = B(0)xxxt−1 + u(0)

xxx+
t = B+xxxt−1 + u+ + w+

t

w+
t ∼ MVN(0,Q+)
xxx0 ∼ MVN(ξ,Λ)

yyy
(0)
t = Z(0)xxxt + a(0)

yyy+
t = Z+xxxt + a+ + v+

t

= Z+I+
q xxxt + Z+I(0)

q xxxt + a+ + v+
t

v+
t ∼ MVN(0,R+)

(161)

As discussed above, we require that Ω(0)
r ZI(0)

q is all zeros while Ω+
r ZI(0)

q has
no rows that are all zeros. This equation is conceptually the same as equation
4.2.28 in Harvey (1989).

We want to write down the joint likelihood of yyy+ = {yyy+
1 , yyy2+, yyy3+, ...} and

xxx+ = {xxx+
1 ,xxx

+
2 ,xxx

+
3 , ...}. We can write the joint log-likelihood function for the

+ elements using equation (160) and the likelihood function for a multivariate
normal distribution.

Ψ+ = log L(yyy+,xxx+; Θ) =

− 1
2

T∑
1

(yyy+
t − Z+(I+

q xxxt + I(0)
q xxxt)− a+)>(R+)−1

(yyy+
t − Z+(I+

q xxxt + I(0)
q xxxt)− a+)− T

2
log |R+|

− 1
2

T∑
1

(xxx+
t −B+xxxt−1 − u+)>(Q+)−1(xxx+

t −B+xxxt−1 − u+)− T

2
log |Q+|

− 1
2

(xxx0 − ξ)>V−1
0 (xxx0 − ξ)− 1

2
log |Λ| − n

2
log 2π

(162)

n is the number of data points. If either R or Q are all zero, the line in the
log-likelihood equation involving R+ or Q+ disappears. Notice that a(0) and
Z(0) do not appear, which means that the rows of a and Z associated with
deterministic yyy do not appear. Since these parameters do not appear in the
likelihood (as written above), we cannot maximize the expected log-likelihood
with respect to them. Notice also that B(0) and u(0) appear in the yyy part of the
likelihood while B+ and u+ appear in the xxx part.

50

If xxx0 is treated as fixed (Λ = 0), then the likelihood takes a slightly different
form using equation (161)

Ψ+ = log L(yyy+,xxx+; Θ) =

− 1
2

T∑
1

(yyy+
t − Z+(I+

q xxxt + I(0)
q xxxt)− a+)>(R+)−1

(yyy+
t − (Z+I+

q xxxt + Z+(I+
q xxxt + I(0)

q xxxt)− a+)− T

2
log |R+|

− 1
2

T∑
1

(xxx+
t −B+xxxt−1 − u+)>(Q+)−1(xxx+

t −B+xxxt−1 − u+)

− T

2
log |Q+| − n

2
log 2π

where xxx0 ≡ ξ

(163)

6.2.2 Z+ and a+ update equations for partially deterministic models

The a and Z update equations involve both ỹt and the inverse of R and thus
must be modified allow zeros on the diagonal of R.

Because we require that Z(0) and a(0) are fixed, we can rewrite the Z update
equation in the case where there are zeros on the diagonal of R as the constrained
update equation for Z (equation 111) with R−1 replaced with R∗:

ζζζj+1 =
(T∑
t=1

(D>z (P̃t ⊗R∗)Dz)
)−1

D>z ×

T∑
t=1

(
vec(R∗(ỹxt − ax̃>t))− (P̃t ⊗R∗)fz

) (164)

where R∗ = (Ω+
r)>(R+)−1Ω+

r . Combining ζζζj+1 with Zfixed, we arrive at the
vec of the updated Z matrix:

vec(Zj+1) = fz + Dzζζζj+1 (165)

Because the Z(0) elements are fixed, D>z (P̃t ⊗R∗)Dz is invertible. As usual, Z
elements must be fixed in such a way that the model has one solution.

Similarly, the derivation for the constrained a update equation also reduces
to the constrained a equation (equation 88) with R−1 replaced with R∗:

αααj+1 =
1
T

(
D>a R∗Da

)−1
D>a R∗

T∑
t=1

(
ỹt − Zx̃t − fa

)
(166)

The new a parameter is then

aj+1 = fa + Daαααj+1, (167)

51

The a(0) elements are fixed which means that D>a R∗Da is invertible. For ex-
ample, if R is all zeros and Z is a column vector, then all the a elements must
be fixed.

6.2.3 u update equation for partially deterministic models with di-
agonal B(0)

To derive the update equation for u, we need to take the partial derivative of Ψ+

holding everything constant except u. If a state process is fully deterministic
and B is diagonal, then we cannot hold xxx(0) constant while changing u(0). If
we change u(0), then xxx(0) must change because it is deterministic. This is in
contrast to u+ which can be changed while holding xxx+ constant, because xxx+ is
stochastic and all values are possible for a given u+ (albeit maybe not as likely).

When B(0) is diagonal and there are no B elements linking the B+ and B(0)

blocks, the equation for the deterministic state processes becomes xt = bxt−1+u
which is simply

xt =btx0 + u

t−1∑
i=0

bi =

btx0 + u
1− bt

1− b
, b 6= 1

x0 + ut, b = 1

(168)

Thus we will replace the I(0)
q xxxt term appearing in Ψ+ (equation 162) with

I(0)
q xxxt = (B(0))txxx(0)

0 + (I(0)
q − (B(0))t)(I−B(0))−1u(0)

= B♦xxx0 + B]u

where B♦ = (I(0)
q BI(0)

q)t

and B] = (I(0)
q −B♦)(Im − I(0)

q BI(0)
q)−1

(169)

Thus Ψ+ becomes

Ψ+ = log L(yyy+,xxx+; Θ) =

− 1
2

T∑
1

(yyy+
t − Z+(I+

q xxxt + I(0)
q (B♦xxx0 + B]u))− a+)>(R+)−1

(yyy+
t − Z+(I+

q xxxt + I(0)
q (B♦xxx0 + B]u))− a+)− T

2
log |R+|

− 1
2

T∑
1

(xxx+
t −B+xxxt−1 − u+)>(Q+)−1(xxx+

t −B+xxxt−1 − u+)

− T

2
log |Q+| − 1

2
(xxx0 − ξ)>Λ−1(xxx0 − ξ)− 1

2
log |Λ| − n

2
log 2π

(170)

This works because I(0)
q BI(0)

q is diagonal. The u(0) parameter appears in the yyy
part of the likelihood and u+ appears in the xxx part. However, because u can

52

have shared elements, it is possible that a u element is shared across u(0) and
u+. We write then u as fu + Duυυυ, put that in equation (170), and differentiate
with respect to υυυ rather than u(0) or u+.

The rest of the derivation steps are similar to those for the general update
equation (analogous to equation 86). Take the derivative of Ψ+ (equation 170)
with respect to υυυ. Note that I(0)

q = (I(0)
q)> and that I(0)

q (I −Bt)(I −B)−1I(0)
q

is a diagonal matrix and thus can be moved (i.e., if A and D are diagonal,
AD = DA and D> = D). After taking the derivative with respect to υυυ, we get:

D>u (R] + TQ∗)Duυυυ =

D>u I(0)
q

T∑
t=1

B]Z>R∗
(
ỹt − ZI+

q x̃t − ZI(0)
q (B♦x̃0 + B]fu)− a

)
+ D>u I+

q Q∗
T∑
t=1

(
x̃t −Bx̃t−1 − fu

)
where R∗ = (Ω+

r)>(R+)−1Ω+
r

and R] =
T∑
t=1

B]Z>R∗ZB]

and Q∗ = (Ω+
q)>(Q+)−1Ω+

q

(171)

Again, this update equation is based on constraining I(0)
q BI(0)

q to be diagonal
and I+

q BI(0)
q and I(0)

q BI+
q to be zero. This means that B can be rearranged to

look like so, where the c’s show the B(0) block and the b’s show the B+ block:
c 0 0 0 0
0 c 0 0 0
0 0 b b b
0 0 b b b
0 0 b b b

 (172)

Note that R] + Q∗ does not have any zero rows or columns since we re-
quire that any state process with zero variance is observed with errors and the
corresponding row/column of Z>R∗Z will be non-zero. Also note that because
Q∗ = I+

q Q∗I+
q by definition, R] is contributing to the u′s associated with Q = 0

and Q∗ contributes to the u′s associated with Q 6= 0.
Thus, the updated υυυ is

υυυj+1 =
(
D>u (R] + TQ∗)Du

)−1
D>u×(T∑

t=1

B]Z>R∗
(
ỹt − ZI+

q x̃t − ZB♦x̃0 − ZB]fu − a
)

+ I+
q Q∗

T∑
t=1

(
x̃t −Bx̃t−1 − fu

))
(173)

53

and
uj+1 = fu + Duυυυj+1, (174)

where B♦ and B] are defined in equation (169) and R], R∗ and Q∗ are defined
in equation (171). If xxx0 is treated as fixed, x̃0 is replaced with ξ, otherwise it
has its usual definition (E[XXX0|yyy(1),Θj]).

Conceptually, I think the approach described here is the same as the ap-
proach presented in section 4.2.5 of (Harvey, 1989), but it is a little more general
because it deals with the case where some u elements are shared (linear func-
tions of some set of shared values), possibly across deterministic and stochastic
elements. Also, I present it here within the context of the EM algorithm, so
solving for the maximum-likelihood u appears in the context of maximizing Ψ+

with respect to u for the update equation at iteration j + 1.

6.2.4 ξ update equation for partially deterministic models with di-
agonal B(0)

Take the derivative of Ψ+ (equation 170) with respect to p where ξ = fξ+Dξp.
The constrained p update equation when Q has zeros on the diagonal is then

D>ξ (R♦ + B>Q∗B)Dξp =

D>ξ

(
I(0)
q

T∑
t=1

B♦Z>R∗
(
ỹt − ZI+

q x̃t − ZB]u− ZB♦fξ − a
)

+ I+
q B>Q∗

(
x̃1 −Bfξ − u

))
where R♦ =

T∑
t=1

B♦Z>R∗ZB♦

(175)

The matrices B♦ and B] are defined in equation (169), and R∗ and Q∗ are
defined in equation (171). B(0) is constrained to be diagonal.

Thus, the updated p is

pj+1 =
(
D>ξ (R♦ + B>Q∗B)Dξ

)−1
D>ξ ×(

I(0)
q

T∑
t=1

B♦Z>R∗
(
ỹt − ZI+

q x̃t − ZB]u− ZB♦fξ − a
)

+ I+
q B>Q∗

(
x̃1 −Bfξ − u

)) (176)

and
ξj+1 = fξ + Dξpj+1, (177)

54

6.2.5 B update equation for partially deterministic models when B(0)

is diagonal and not fixed

If B(0) is diagonal and fixed, we can use the usual constrained update equation
for B. But if we wanted to estimate B(0), the problem becomes difficult as
outlined here. First we would write Ψ+ in equation (170) as a function of βββ
instead of B. Note that B♦XXX0 and B]u are column vectors. We could use
relation (74) to show that:

I(0)
q B♦I(0)

q XXX0 = (XXX>0 ⊗ I)((f (0)
b)t + D(0)

b βββt),

I(0)
q B]I(0)

q u = (u> ⊗ I)((f (0)
b)] + D(0)

b βββ]),

where dt ≡

dt1
dt2
. . .
dtp

where d] ≡

dt1/(1− d1)
dt2/(1− d2)

. . .
dtp/(1− dp)

(178)

The terms f (0)
b and D(0)

b have the rows corresponding to vec(B+) zero’ed out.
The derivation I believe would proceed by taking the derivative of Ψ+ with

respect to βββ. However we would end up with a polynomial in βββ because we will
have the terms ∂bt

∂b and ∂bt/(1−b)
∂b . where b denotes one of the diagonal elements in

B(0). That starts to look messy and there might be multiple solutions. Perhaps
another day, I will solve that problem or come upon a more elegant solution.
For now, I will side-step this problem and require that any B(0) terms are fixed.

7 Implementation comments

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algo-
rithms it can get stuck on local maxima. There are a number approaches to
doing a pre-search of the initial conditions space, but a brute force random
Monte Carol search appears to work well (Biernacki et al., 2003). It is slow, but
normally sufficient. In my experience, Monte Carlo initial conditions searches
become important as the fraction of missing data in the data set increases.
Certainly an initial conditions search should be done before reporting final esti-
mates for an analysis. However in our22 studies on the distributional properties
of parameter estimates, we rarely found it necessary to do an initial conditions
search.

The EM algorithm will quickly home in on parameter estimates that are
close to the maximum, but once the values are close, the EM algorithm can
slow to a crawl. Some researchers start with an EM algorithm to get close to

22“Our” and “we” in this section means work and papers by E. E. Holmes and E.J. Ward.

55

the maximum-likelihood parameters and then switch to a quasi-Newton method
for the final search. In many ecological applications, parameter estimates that
differ by less than 3 decimal places are for all practical purposes the same. Thus
we have not used the quasi-Newton final search.

Shumway and Stoffer (2006; chapter 6) imply in their discussion of the EM
algorithm that both ξ and Λ can be estimated, though not simultaneously.
Harvey (1989), in contrast, discusses that there are only two allowable cases for
the initial conditions: 1) fixed but unknown and 2) a initial condition set as a
prior. In case 1, ξ is xxx0 (or xxx1) and is then estimated as a parameter; Λ is held
fixed at 0. In case 2, ξ and Λ specify the mean and variance of XXX0 (or XXX1)
respectively. Neither are estimated; instead, they are specified as part of the
model.

As mentioned in the introduction, misspecification of the prior on xxx0 can
have catastrophic and undetectable effects on your parameter estimates. For
many MARSS models, you will never see this problem. However, if you are
fitting models that imply a correlation structure between the hidden states (i.e.
the variance-covariance matrix of the XXX’s is not diagonal), then your prior can
definitely create problems if it does not have the same correlation structure as
that implied by your MLE model. A common default is to use a prior with a
diagonal variance-covariance matrix. This can lead to serious problems if the
implied variance-covariance of the XXX’s is not diagonal. A diffuse prior does not
get around this since it has a correlation structure also even if it has infinite
variance.

One way you can detect that you have a problem is to start the EM algorithm
at the outputs from a Newton-esque algorithm. If the EM estimates diverge and
the likelihood drops, you have a problem. Here are a few suggestions for getting
around the problem:

� Treat xxx0 as an estimated parameter and set V0=0. If the model is not
stable going backwards in time, then treat xxx1 as the estimated parameter;
this will allow the data to constrain the xxx1 estimate (since there is no data
at t = 0, xxx0 has no data to constrain it).

� Try a diffuse prior, but first read the info in the KFAS R package about
diffuse priors since MARSS uses the KFAS implementation. In particular,
note that you will still be imposing an information on the correlation
structure using a diffuse prior; whatever V0 you use is telling the algorithm
what correlation structure to use. If there is a mismatch between the
correlation structure in the prior and the correlation structure implied
by the MLE model, you will not be escaping the prior problem. But
sometimes you will know your implied correlation structure. For example,
you may know that the xxx’s are independent or you may be able to solve
for the stationary distribution a priori if your stationary distribution is
not a function of the parameters you are trying to estimate. Other times
you are estimating a parameter that determines the correlation structure
(like B) and you will not know a priori what the correlation structure is.

56

In some cases, the update equation for one parameter needs other parame-
ters. Technically, the Kalman filter/smoother should be run between each pa-
rameter update, however following Ghahramani and Hinton (1996) the default
MARSS algorithm skips this step (unless the user sets control$EMsafe=TRUE)
and each updated parameter is used for subsequent update equations.

8 MARSS R package

R code for the Kalman filter, Kalman smoother, and EM algorithm is pro-
vided as a separate R package, MARSS, available on CRAN (http://cran.r-
project.org/web/packages/MARSS). MARSS was developed by Elizabeth Holmes,
Eric Ward and Kellie Wills and provides maximum-likelihood estimation and
model-selection for both unconstrained and constrained MARSS models. The
package contains a detailed user guide which shows various applications. In ad-
dition to model fitting via the EM algorithm, the package provides algorithms
for bootstrapping, confidence intervals, auxiliary residuals, and model selection
criteria.

References

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for
the EM algorithm for getting the highest likelihood in multivariate gaussian
mixture models. Computational Statistics and Data Analysis, 41(3-4):561–
575.

Borman, S. (2009). The Expectation Maximization Algorithm - A short tutorial.

Ghahramani, Z. and Hinton, G. E. (1996). Parameter estimation for linear
dynamical systems. Technical Report CRG-TR-96-2, University of Totronto,
Dept. of Computer Science.

Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman
filter. Cambridge University Press, Cambridge, UK.

Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices,
with some uses in jacobians and multivariate statistics. The Canadian Journal
of Statistics, 7(1):65–81.

Johnson, R. A. and Wichern, D. W. (2007). Applied multivariate statistical
analysis. Prentice Hall, Upper Saddle River, NJ.

McLachlan, G. J. and Krishnan, T. (2008). The EM algorithm and extensions.
John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear gaussian
models. Neural Computation, 11:305–345.

57

Shumway, R. and Stoffer, D. (2006). Time series analysis and its applications.
Springer-Science+Business Media, LLC, New York, New York, 2nd edition.

Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing
and forecasting using the EM algorithm. Journal of Time Series Analysis,
3(4):253–264.

Wu, L. S.-Y., Pai, J. S., and Hosking, J. R. M. (1996). An algorithm for esti-
mating parameters of state-space models. Statistics and Probability Letters,
28:99–106.

Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., and Beukema, J. J. (2003).
Estimating common trends in multivariate time series using dynamic factor
analysis. Environmetrics, 14(7):665–685.

58

