
LAMBDA

LONG-TERM ASSEMBLAGE MAR(1)-BASED DATA ANALYSIS

0 50 100 150 200
4

4.5

5

5.5

6

6.5

7

7.5

TimeStep

lo
g(

N
)

USER GUIDE
BETA VERSION 0.9.2

Steven V. Viscido

NRC Post-doctoral Fellow
Northwest Fisheries Science Center (206)860-2450

2725 Montlake Boulevard East, Seattle, WA 98112 USA
steven.viscido@noaa.gov

 - 1 -

CONTENTS
1 Introduction.. 4

1.1 About this document ... 4
1.2 System Requirements.. 4
1.3 Terms and Conditions ... 4

2 Overview.. 5
2.1 So what is LAMBDA?.. 5
2.2 So what is a MAR-1 Process?... 5
2.3 Further reading.. 7
2.4 Who would want to use LAMBDA? .. 7
2.5 How to use this book... 7
2.6 Acknowledgments... 8

3 Getting Started ... 9
3.1 Obtaining a copy of LAMBDA .. 9
3.2 Installing LAMBDA ... 9
3.3 Running LAMBDA .. 9

4 Data Files and Formats .. 11
4.1 Data Formats, Variables, and Observations.. 11
4.2 Types of Data.. 12
4.3 Importing data... 13

4.3.1 Importing raw (text-file) data... 13
4.3.2 Adding a replicate to an existing dataset ... 15

4.4 Loading and saving formatted data... 16
4.5 Exporting data to other applications ... 16

5 Editing and Modifying Data .. 17
5.1 Loading column labels from a file .. 17
5.2 Editing column labels by hand.. 18
5.3 Adding and deleting columns ... 19

6 Viewing and Simulating Data.. 21
6.1Viewing and sorting data ... 21
6.2 Merging replicates .. 21
6.3 Simulating data ... 21

6.3.1 Simulation conditions .. 22
6.3.2 Simulation Parameters ... 22
6.3.3 Simulate Data... 24
6.3.4 Text and Plot Display... 26
6.3.5 Saving Simulated Data... 27

6.4 Plotting data .. 27
7 Scaling, Pooling, and Descriptive Statistics .. 29

7.1 Scaling the data ... 29
7.1.1 Computing sampling effort. ... 29
7.1.2 Scaling the variates or covariates... 30

7.2 Pooling the data... 30
7.2.1 Pooling by column ... 30
7.2.2 Pooling by rows ... 31

7.3 Transforming the data ... 32

 - 2 -

7.4 Computing descriptive statistics ... 32
7.5 Plotting Statistics .. 33

8 Subsampling the Data .. 34
8.1 The Subsample window.. 34
8.2 Viewing, sorting, and saving the subsampled data ... 35
8.3 Applying your subsample to the full dataset... 35
8.4 Subsampled data as replicates... 35

9 MAR-1 Model Estimation ... 37
9.1 Choosing the estimation method... 37
9.2 Determining which interactions to use ... 37
9.3 Manually specifying the model... 38
9.4 Iterative Search and Model Estimation... 39
9.5 Combining iterative search and manual specification .. 40
9.6 Saving and clearing estimates... 40
9.7 Assessing the model fit ... 40
9.8 Computing stability properties.. 40
9.9 Computing MAR-1 across many replicates.. 40
9.10 Bootstrapping the model ... 41
9.11 Normal Probability Plots... 42
9.12 Saving MAR-1 Estimates ... 42
9.13 Tools for evaluating MAR-1 estimates... 42
9.14 Estimating Elasticity and Sensitivity of the B matrix... 42

10 Setting Preferences for LAMBDA... 44
10.1 The use of “inlined” code ... 44
10.2 The Star-P option .. 45

Appendix 1: Quickstart Guide .. 46
Appendix 2: Flow chart of LAMBDA procedures ... 47

 - 3 -

1 INTRODUCTION

1.1 About this document
This document is intended as a reference manual for users of the LAMBDA toolkit. Note that
MatLab is required, and some basic familiarity with MatLab (such as how to add paths to
your environment, and how to open and execute MatLab files) is assumed. However, once
LAMBDA is running on your system (the "LAMBDA" window and logo appear), all
functions and steps should be executable using only the graphical user interface (GUI) -- no
line commands ought to be necessary.

1.2 System Requirements
To run LAMBDA successfully, the following are minimally required:

 MatLab version 7.0.1 (R14) w/service Pack 1, or later
 MatLab's Statistics toolbox
 At least 256 MB of RAM on your system
 5 MB of Hard Drive space for the LAMBDA installation

The memory (RAM) requirements are mostly for MatLab. LAMBDA itself generally takes
only 2-3 MB of RAM while running (this includes having a small dataset in memory).
However, please note that system requirements may be higher, if you have a very large
dataset, or one with lots of variates and covariates. The number of variates dramatically
increases how long models will take to run, or bootstrap searches will take to execute,
because they are multiplicative. Thus, if a system with two variates takes 4 minutes to be run
under LAMBDA, a system of equal length but with 4 variates will take 16 minutes, and one
with 8 variates will take 64 minutes. This can be aided by using systems with faster
processors and with greater amounts of memory (RAM).

1.3 Terms and Conditions
LAMBDA: Long-term Assemblage MAR(1)-Based Data Analysis
Copyright (c) 2005 Steven Viscido

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
in the Programmer's Reference Guide for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 - 4 -

2 OVERVIEW

2.1 So what is LAMBDA?
LAMBDA stands for Long-term Assemblage MAR(1)-Based Data Analysis. It is a MatLab
toolkit designed to do MAR-1 based data analysis on long-term datasets (i.e., time series) –
see section 2.2 for more details on what a MAR-1 model is. The LAMBDA toolkit is
designed so that, once the user starts the program and brings up the user interface, all
necessary operations should be able to be performed from the user interface (that is, you
should not have to resort to “command line” interactions with MatLab). LAMBDA is
designed to work with field data, of the sort one would have from surveys taken in the same
area over many months or years, although just about any data in a time series can be used
with it. LAMBDA is designed to allow the user to step through the entire modeling process,
from importing the data into a format readable by MatLab, to re-scaling the data as
necessary, to obtaining descriptive statistics of the dataset, to, finally, performing a MAR-1
regression model and obtaining output parameters. Because LAMBDA was written in the
MatLab language, you must have MatLab installed on your computer to use LAMBDA. You
will also need to have the Statistics toolbox installed for MatLab, because several of the
routines in this toolbox are used by LAMBDA. If you choose certain options, you will also
need the Optimization toolbox for MatLab (the options requiring this will be noted below).
Finally, throughout this manual I will assume a rudimentary knowledge of MatLab on the
part of the user. In other words, I assume you know how to start up MatLab and run a script
from the command line or edit window, how to add directories to your MatLab path, and so
on. If you do not know how to do these things, I recommend purchasing an introductory
MatLab book, and spending an afternoon with it before starting to use LAMBDA.

2.2 So what is a MAR-1 Process?
A MAR-1 process is a Multivariate, Auto-Regressive first (1st) order process. Essentially, it
is a means of estimating interactions between multiple variates from time series data, using
matrix algebra. Ives et al. (2003) published the mathematics and statistics of how to do this,
and the reader is encouraged to read this reference if MAR-1 processes are unfamiliar.

A MAR-1 model is a stochastic, non-mechanistic model that uses time series data to deduce
inter-population interactions and the effects of covariates (e.g., physical variables) on
populations. Normally, the data exist in a time series for each species or population, and the
only things known are the population sizes, such as data obtained by population censuses, or
from fishery landing data. If the time series is of sufficient length (“sufficient” being
determined from the nature of the data), the strength and direction of interactions between all
species and the measured environmental covariates can be estimated in a manner similar to a
multivariate regression.

The starting point for a MAR-1 model is the Gompertz equation (Ives et al. 2003), which is
an exponential equation describing fluctuations in population size. If we let represent the
population density (biomass per square meter, number per hectare, etc), and let a represent

tN

 - 5 -

the intrinsic rate of increase, and b represent density dependence, then the Gompertz equation
is

)]ln()1(exp[11 −− −+= ttt NbaNN . (1)

If we take the natural logarithm of both sides, and let X stand for ln(N), then the equation
simplifies to

1−+= tt bXaX . (2)

Notice that eq. (2) is linear, which substantially simplifies the mathematics. This is still a
deterministic model. Of course, because we aren’t omniscient, things we can’t measure
always impact natural systems. Therefore, there is always some “error” or unexplained
variation in our measurements of X (the log of the population size). This is accounted for by
means of E, the process error, which is assumed be a random normal variate with a mean of
zero and variance , and independent in time, which gives us the stochastic version of eq.
(2), namely

2σ

ttt EbXaX ++= −1 . (2)

This is now a univariate auto-regressive, first order, or AR-1, process. The log of the
population size at any time t depends on (1) the intrinsic rate of increase a, (2) the log of the
population size in the previous time step (scaled by the strength of density dependence b),
and (3) some random process error E. One can also add an effect of a covariate by specifying
the covariate's measure as U (which may or may not be log-transformed, as determined by
the nature of the data), and the strength of the interaction between the covariate and the
population as c. This gives us the equation

tttt EcUbXaX +++= −− 11 . (3)

For example, U might be the log of the mean annual sea surface temperature (SST) for an
annual plankton survey, and c would then represent how strongly (positively or negatively)
SST affects plankton abundance.

The full AR-1 model in eq. (3) is a univariate model. To convert it to a multivariate (MAR-1)
model, one uses the same equation, but the variates and covariates are formatted as matrices.
If we let X stand for the matrix of X values for each population, A stand for the matrix of a
values for each population, and so on, we can write the MAR-1 model as follows:

tttt ECUBXAX +++= −− 11 . (4)

The key to this model is that it allows one to estimate the interaction strengths reciprocally
between all species for which one has population size estimates. This gives us B, the
interaction matrix. It also allows an estimate of the effects of covariates on the populations

 - 6 -

through C. Thus, given a time series in which there are two or more species, and any number
of covariates, one can estimate how strongly or weakly these components of the system
interact with one another. Since it is a regression model, the MAR-1 model will give one
coefficients of determination 2R , which will describe how much of the variance is explained
by the model. A MAR-1 model can also compute properties of community stability, such as
reactivity, return time, and the like. Thus, with just estimates of population sizes over a
period of time, and measures of a few covariates, an investigator can deduce how strongly
the components of the system interact with each other, and how stable the system is in the
face of perturbations.

2.3 Further reading
For further reading, the user is referred to the seminal paper on MAR-1 models:

Ives AR, Dennis B, Cottingham KL, Carpenter SR, 2003. Estimating community stability
and ecological interactions from time series data. Ecological Monographs 73:301-330.

2.4 Who would want to use LAMBDA?
The LAMBDA toolbox is primarily aimed at ecologists, fishery biologists, and other
scientists who work with time series data. Because LAMBDA is a tool for MAR-1 based
analysis (see Section 2.2), and because MAR-1 models are autoregressive models involving
time series, the toolkit is not useful for data in other formats (i.e., those not in time series
format). I assume the user has basic familiarity with regression, and is sufficiently familiar
with MAR-1 models to know what a variate and a covariate is with regard to his own
dataset. My hope is that ecologists and managers will be able to import their data into
LAMBDA, and use it to determine the interactions between species in their system, as well as
the stability of their system. The goal is to make LAMBDA a useful tool for analyzing long-
term data.

2.5 How to use this book
This book is designed as a guide for users of LAMBDA (people who use the interface
elements to do data analysis on time series). It is not designed as a programmer's guide.
Those interested in the nuts-and-bolts of LAMBDA code are referred to the matlab (m) files
and their associated comments. Programmers are free to modify the code if they wish, but
you do this at your own risk, and the program is not guaranteed to work if you change it.

This book is broken up into sections that are hopefully more-or-less self-sufficient. It is
designed to be read through from start to finish, but because of its section-based format, it
should also be possible to skip those sections that are of no interest to you, and focus on
those that address your immediate needs. There is also a chapter in the back that shows a
tutorial of how to use LAMBDA in conjunction with the sample data sets, to perform a
simple data analysis, step-by-step. I recommend that the reader peruse the entire book and
read a few early chapters, and then move on to the tutorial to see step-by-step how to use the
LAMBDA toolbox.

 - 7 -

2.6 Acknowledgments
This book, and the development of the LAMBDA toolkit, benefited from the assistance of
many people. Eli Holmes served as my primary post-doctoral adviser at the National Oceanic
and Atmospheric Administration (NOAA). Funds for my position were provided by a
National Research Council (NRC) post-doctoral fellowship. Members of the Conservation
Biology (CB) and Fisheries Research and Monitoring (FRAM) divisions provided valuable
assistance, advice, and consultation all along the way. In particular, I extend thanks to
Stephanie Hampton, Chris Jordan, Mark Sheurell, Steve Katz, Isaac Kaplan, and Chris
Harvey. Anthony Ives, who wrote the paper that inspired the development of LAMBDA
(Ives et al. 2003) provided his code to me, and helped me understand various parts of it that
were confusing to my limited MatLab knowledge.

 - 8 -

3 GETTING STARTED

3.1 Obtaining a copy of LAMBDA
LAMBDA is a toolbox for MatLab that is developed and maintained by Steven Viscido, an
NRC post-doctoral fellow at the National Marine Fishries Service. It is distributed free of
charge under the GNU General Public License (GPL). It can be obtained by e-mailing the
author directly (steven.viscido@noaa.gov).

The file you receive will be a gun-zip archived file (tar.gz) or a zip file (.zip), which
will need to be uncompressed. On a Windows system, this can be done using WinZip
(http://www.winzip.com), gunzip (http://www.gzip.org) or WinRAR
(http://www.rarlab.com). For Windows XP/2000 or later, you can also use the
default unzipping package included with the Operating System. On a unix system, the
gzip/gunzip programs come with most shells these days.

Once you have obtained the program, you are ready to unzip and install it.

3.2 Installing LAMBDA
Once you have obtained the zip archive of the latest version of the LAMBDA toolbox (see
Section3.1), simply extract it using whatever unzip program you wish, into whatever
directory you wish. The archive will create a LAMBDA folder, and all program files and
documents will be unpacked into this folder. That's all you need. Once that is done, you
might wish to add the LAMBDA folder to your MatLab path (see the MatLab documentation
for how to do this, or type help path in the MatLab command window). After adding the
path, you can run LAMBDA whenever you want (see Section 3.3)..

3.3 Running LAMBDA
To run LAMBDA, make sure you are in the LAMBDA directory in MatLab. You can check
this by typing the command pwd at the command line. If you aren't in this directory, you
should use the cd command to change to it. Once you are in the LAMBDA directory, simply
type lambda at the command line, and the LAMBDA user-interface window will appear
(Figure 3.1).

Once this user-interface window appears, you should be able to use its menus and the buttons
on subsequent windows to perform all necessary operations within LAMBDA. You should
not normally have to execute any further line commands “by hand” at the MatLab command
prompt. You are now ready to begin using LAMBDA.

 - 9 -

Figure 3.1: The LAMBDA user-interface window on first startup.

 - 10 -

4 DATA FILES AND FORMATS

4.1 Data Formats, Variables, and Observations
Perhaps the most important element of any data analysis is the most fundamental:
understanding what the variates and covariates are, and the types of data on which you are
going to perform your analysis. Therefore, I will begin by defining some terms that will be
used regularly throughout this book, so that we are on the same page whenever they come up.

Variables. Each different kind of thing you measure, either in the field, or in a lab, is known
as a variable (this term should not be confused with variate, which I will discuss below).
Variables are things such as the air temperature on the day you did your survey, or the
number of fish you captured in your trawl net, or the weight of a sample. As the name
implies, variables can vary in value; they are not always the same. Thus, the air temperature
might be warmer one day when you do your sampling, and cooler the next. Each variable
normally has a single name associated with it (e.g., temperature, mass, volume, number). The
variable is, in other words, what you are measuring.

Observation. Each time you make a measurement of a variable, you are making an
observation of it. So for example, you could go out today and count the number of gophers in
your yard, and observe that there are seven gophers. Next week you could go out and again
count this same variable (number of gophers), and observe that this time there are nine
gophers. Each of these measurements is an observation of the variable “number of gophers.”

Data sets are ordinarily organized in tabular1 form. The variables will be organized in the
columns (one column to a variable) and the observations of each variable will be listed in the
rows. This type of organization is called “tabular data storage” or, if you have it on a
computer, it is known as a “flatfile.” Note: LAMBDA assumes your data are organized like
this in a flatfile. If they are not, you must convert them using some other means, before you
can use your data in LAMBDA.

An example of a “flatfile” dataset is shown below. Note that the variables are: day, air
temperature, and number of gophers. Each observation is listed in a given row (so for
example, on day 1, there were 4 gophers observed).

Day Temp (C) No. Gophers
1 17 4
2 15 5
3 16 5
4 16 7
5 18 6
6 17 4
7 20 3
8 14 9

1 Here, “tabular” means “in the form of a table.” This is not to be confused with tab-separated data, which
LAMBDA will not accept. Make sure data are separated by one or more spaces, not tabs. (Any number of
spaces is allowable, and the number of spaces may vary from column to column – but avoid using tabs.

 - 11 -

To be able to import your data into LAMBDA, they will need to be organized into flatfiles
with this type of format. Each variable must have its own column, and the observations must
be listed sequentially row by row. Note that they do not have to be in any particular order;
our example data set is sorted by day, but that is not required. LAMBDA will allow you to re-
sort the dataset in any way that you want (see Chapter 5).

4.2 Types of Data
LAMBDA is designed to recognize, and expect, several types of data. These data types have
been divided (arbitrarily) into three categories: Classification variables, Variates, and
Covariates. I will briefly explain what each term means.

Classification variables. Whenever you perform a survey or an experiment, you will have
certain variables that you use to categorize what you are doing and how you are taking
measurements. For example, you might record the date on which a survey was performed
(day, week, month, or year, depending on sampling design), the location at which the
samples were taken, the sampling apparatus you used, and other relevant information about
your sampling design. This will help you to divide up, subsample, and pool your data (for
example, you might decide to look only at samples taken between 1977 and 1981, or only
those recorded on Wednesday mornings). Classification variables are used, therefore, to
classify, partition, sort, and organize the rest of your dataset. For example, when you record
the date of your lab experiment, you are using it as an identifier that will help you sort and
keep track of your data. LAMBDA assumes that your data file is organized with at least one
classification variables. That is, one of your columns of data should be a classification
variable.

Variates. The variates are usually the counts, biomass estimates, density estimates, or other
means of recording the number of individuals in one or more populations. These values will
be used by LAMBDA to estimate the A, B, and C matrices. Because LAMBDA assumes all
measures are in the same units, if your variates are not in the same units, you will need to
convert them to a single, standard unit before you import them into LAMBDA. For example,
if you have the biomass of plankton measured in g and the biomass of fish measured in kg,
you will need to either divide the former by 1,000 or multiply the latter by 1,000 so they are
all scaled the same way. Without doing this, you might have issues when trying to run the
MAR-1 model. Your variates may have been recorded either be scaled to the sampling
“effort” (e.g., g/m2), or as raw estimates. If they are raw estimates, then unless your sampling
effort (such as the area swept by a net) is exactly identical, you need classification variables
(see above) that quantify this “effort” information, and must convert variate data so that each
observation comes in the same units. For example, suppose you swept the net twice. The first
observation was a 3 m2 sweep and came up with 100 g of plankton. The second observation
was a 2 m2 sweep that came up with 50 g of plankton. To give these observations the same
units, you must divide by area, which converts the first measure to 33 g/m2 and the second to
25 g/m2. This need not be done in your input dataset; LAMBDA can do it for you as long as
you import your “area swept” information as a classification variable. For more details on
scaling your data, see Chapter 6.

 - 12 -

Covariates. Covariates are special variables. Their interaction matrix C is separate from that
of the variates. A covariate is one that likely affects the variates, but is not affected by them
in turn. In other words, the interaction is a one-way street (if it’s a two-way street, then
you’ve got a variate instead – see above). An example of this might be sea surface
temperature, which would be a covariate in a dataset where plankton densities are the
variates (since plankton density is probably affected by sea temperature, but sea temperature
is not likely to be affected by plankton density). Covariates will often be on different scales
from one another, and this is entirely acceptable, as long as any given covariate is always on
the same scale (for example, your temperature estimates should not alternate between Celsius
and Kelvin scales). Covariates may, or may not, need to be scaled to the sampling “effort”
(area swept, etc), depending on what they are. For example, temperature will usually not
depend on sampling effort, and would not need to be scaled, but if you are using the number
of phytoplankton per liter of water as a covariate, you will need to scale it by sampling effort.
Again, if you provide LAMBDA with classification variables of the sampling effort, it can
scale the data for you as needed. Please note that at this time, LAMBDA can only either
scale all covariates, or none, so plan your dataset accordingly.

The most important thing to remember about your variables is that you are the one who must
determine which are simple classification variables (that is, variables that help you lump or
sort your dataset, but are not active in the system), which are variates (those that mutually act
on each other), and which are covariates (those that act on the variates but are not acted on by
them). This will depend entirely on context, and on what you measured. For example, you
might not have measured “both directions” of an interaction between X and Y, which might
lead you to consider Y as a covariate, rather than a variate. On the other hand, some things
absolutely cannot be variates. For example, the number of gophers in your yard cannot
possibly affect sunspot activity; so, although you can count sunspot activity as a covariate
acting on the gophers, it would not be reasonable to count it as a variate being equally acted
upon by the gophers. In general, you will need to use your biological intuition to determine
how to classify variables.

4.3 Importing data
There are three functions for importing data from the file menu. You can (1) import raw
(text-file) data, (2) simulate formatted data, or (3) add a new set of data (from a text file) to
an existing LAMBDA dataset. This section will cover all three options.

4.3.1 Importing raw (text-file) data
Before you can use LAMBDA to analyze your data, you will need to import your data into
LAMBDA so that it is formatted in a way LAMBDA understands. Currently, the only form of
raw data that LAMBDA can import is data in whitespace-separated columns (one column per
variate) stored as text (txt) files2. LAMBDA searches for files named with a *.txt
extension, so if your data set is called something else, change the last part of the name using
your operating system's file naming tools (or copy it under a new name). LAMBDA will then

2 It is critical that the columns of data be separated by spaces (white space) and not by tabs. Be careful when
doing Excel exports, because Excel clandestinely inserts tabs rather than whitespace in most export formats. It
is probably best when using excel to simply do a direct excel import (see section 4.3.2).

 - 13 -

be able to import your file. Note that re-naming it does not properly format it; you must make
sure your data are in space-separated columns for the import to be successful. An example of
what a reasonable LAMBDA dataset would look like is below, with the columns being year,
station, plankton biomass, and mean annual temperature.

Year Station biomass Temp
1980 1 100.0 20
1980 2 102.3 19
1981 1 99.7 16
1981 2 89.4 17
1982 1 101.3 18
1982 2 101.1 19
1983 1 88.7 16
1983 2 92.3 19

Once you are sure you have your data in column format, you are ready to import into
LAMBDA. To import a file, use the File menu, and select Import Data and then From text
file. This will bring up a window to allow you to select a file. After you choose the file you
wish to import, LAMBDA will ask you whether your file contains any “headers”. These are
words, strings, or other labels at the top of a file that are used to name each of the variables.
In our example above, the headers are, in order, “Year,” “Station,” Biomass,” and “Temp.” If
you have headers and tell LAMBDA so by answering “yes” when it asks, it will then ask if
you want to include those or not. If you want to re-name them, answer “no” to the second
question. If you have no headers or if you choose to discard existing headers, LAMBDA will
automatically name your variables “1”, “2”, “3,” and so on, from left to right.

Note: If you have headers but you tell LAMBDA that you don’t, you will get an error,
because it will try to treat the first row as numerical values, and they are words. Make sure
you check the file before answering this question.

LAMBDA will next ask you to select which variables are Classification variables (Figure
4.2). It will bring up a list of all the variables you have imported, and you simply click the
ones you wish it to treat as Classification variables, and then choose “OK.” If you have
several of these, and they are adjacent, you can use shift-click to highlight them all. If they
are not adjacent, such as at the top and bottom of the list, hold down the control key, and
click (this is called “ctrl-click”).

After choosing Classification variables, you will then be asked to select which of the
remaining (not yet assigned) data columns are your variates, and then the rest will be
assigned as your Covariates. At this point, your data have been fully imported into
LAMBDA, and you can then begin the process of manipulating, editing, and otherwise
analyzing your dataset.

 - 14 -

Please note that importing data does not save it permanently to a file. Your data will be
stored temporarily in a folder within the LAMBDA directory only for the duration of the
LAMBDA session. As soon as you close LAMBDA, the temporary data are erased. If you
wish your dataset to be saved in a more permanent fashion, use the “Save Data As…”
function from the file menu (see section 4.4).

Figure 4.2: Specifying how many columns you have of each data type.

4.3.2 Importing an EXCEL file
LAMBDA can recognize and import Microsoft Excel® files (*.xls). As in the examples
above, your data must be stored in columns, with one column per variable. If you have one
row of “header” information, that row will be recognized and imported into LAMBDA
(similar to the example above with text files). LAMBDA will assign a number to each column
at the time of import if you do not have header information in the file. LAMBDA does not
accept more than one row of header information, and multiple header rows will produce an
error.

4.3.3 Adding a replicate to an existing dataset
If you have a LAMBDA formatted dataset already in memory, and you want to add the data
from another text file, you can do this by choosing the Add a rep to an existing dataset
option. You can add a text file to the existing dataset only if it has the exact same number of
variates, covariates, and time steps as those of the dataset already in memory. For example,
you cannot add a 100-time step series to a dataset that only has 20 time steps in it. If the

 - 15 -

dimensions of the dataset are the same (number of columns and rows), then the import
process will add the data as a new replicate (a new “page” in the MatLab array).

4.4 Loading and saving formatted data
Once your data set has been imported, it is now in “LAMBDA format.” This means it is
stored in special data objects, and the information is only accessible through the LAMBDA
interface or its functions. The data will only persist as long as LAMBDA is running, so if you
wish to save your data for future work in LAMBDA, you should save your data in LAMBDA
format. LAMBDA dataset files are saved with a *.dst extension. To save your LAMBDA-
formatted data to a file, select the File menu, and choose the second option, Save as.... Give
the file a name with a *.dst ending e.g., mydatafile.dst), and choose OK to save it as
a file. To load your saved LAMBDA data file, select the File menu and choose Load
formatted data. This will let you peruse your folders for any *.dst files, and you can then
select one. Choose OK to load the file. The data, in LAMBDA format, will now be loaded
into memory, and you can perform all normal operations on it.

I recommend that, as soon as you import your data correctly the first time, you immediately
save it to a *.dst file, so that it isn't necessary to keep importing raw data. Also, any time
you perform an operation on a dataset, save it under a separate name, to reduce the need for
repeatedly performing the same operation. For example, suppose you import your dataset,
and then decide to delete two columns of data. Save the new, smaller dataset under a
different name, so that you can use it the next time and do not have to once again import data
and delete columns.

4.5 Exporting data to other applications
At some point after working with LAMBDA, you may wish to export the datasets that have
been formatted for LAMBDA, back out for use with another package. Since the data are
stored on LAMBDA data objects, you will need to export them in a more standard format.
This option is available in the File menu. Choose Export Data, and the dataset in memory
will be exported to a comma-sparated (*.csv) text file. This file will then be readable by
any software that can import such files (e.g., Excel, SAS, MatLab).

 - 16 -

5 EDITING AND MODIFYING DATA

Once your dataset has been loaded into LAMBDA's memory (which, by definition, causes it
to be converted to a LAMBDA-formatted dataset), you will be able to edit and modify it in
certain ways. These modifications include loading column labels from a file, editing column
labels by hand, and adding or deleting columns from the dataset.

5.1 Loading column labels from a file
You may want to rapidly change all the labels of your dataset at once. For example, suppose
we have a file that includes the year and sample site, the biomass of crabs, and the
temperature (as a covariate) at the time of sampling, but that these columns did not have
headers in the imported file, so it looked like this:

1980 1 100.0 20
1980 2 102.3 19
1981 1 99.7 16
1981 2 89.4 17
1982 1 101.3 18
1982 2 101.1 19
1983 1 88.7 16
1983 2 92.3 19

Having imported this file, the first column, which contains the year, would be labeled by
LAMBDA as “1;” the second column, which contains the sample site number, would be
labeled “2,” and so on. These labels may be edited by hand (see Section 5.2), but if there are
a lot of them, this may be inconvenient, as they would need to be done one at a time. Instead,
you can import a single text file that contains the labels. The format of this file is very
specific, however: one label must be present on each line, and the labels must be in the same
order as the columns were in. Thus, in our example, first “year,” then “site,” and so on, and
finally, there can only be letters, numerals, or underscores (_) in the label names. For
example, we could set up a label file for our 4-column dataset that looks like this:

Year
Site_Number
Crab_biomass
Temp

Label files should be in text format, and should have the extension *.txt at the end
(LAMBDA searches for *.txt files by default). To import a set of labels from such a file,
open the Edit menu and select Load column labels. This will import your labels and label
your columns as appropriate.

 - 17 -

Figure 5.1: Importing labels from a file using the Edit menu.

Note that, if after loading the file you wish to change any of the labels you loaded, this can be
done by using the Edit/Input Column Labels feature from the Edit menu (see Section 5.2).

5.2 Editing column labels by hand
The columns you have imported into LAMBDA come with default labels equal to their
column numbers (that is, “1” is the label for the first column imported, “2” for the second,
and so on, going from left to right in the import file). If you wish to change these labels, or at
any point wish to edit the labels of your columns, this can be done by opening the Edit menu
and selecting Edit/Input column labels from the list. After choosing this option, a new
editing window will appear.

Figure 5.2: Editing labels by hand.

 - 18 -

This window presents the dataset in three boxes, one for each type of variable (see Chapter
4). To edit a column label, simply click the label with the mouse, and then select Edit Label
at the bottom of the box. Note that each variable type has its Edit Label button, so make sure
you press the correct one for the variable label you wish to edit. This will bring up a new box
with the old variable name already present, and ask you to type in a new one. If you make a
mistake, you can exit this smaller window by choosing Cancel. Please note that once you
choose OK from this window, the labels will be changed. If you mistakenly change the
labels, you can always edit them again. When you are done editing column labels, you can
exit this window by pressing the “close” button.

5.3 Adding and deleting columns
If you wish to add more columns of data (remember: each column represents the data for one
variable) to the dataset in memory, or if you wish to delete existing columns, you can do so
by means of the Edit menu's Modify Columns option. This will bring up a secondary menu
with two choices: Delete, and Add.

Deleting columns. If you wish to delete a column of data, you can do this by choosing the
Delete option from the Edit - Modify Columns menus. After choosing Delete, a new
window will pop up, listing the column labels for each column in the dataset. You can select
one or more of these columns to delete. To select and delete a single column, simply click on
that column's name, and select OK. If you wish to delete multiple columns, you can do so by
holding down the ctrl button and clicking on the name of each variable you want to delete
from your data.

Figure 5.3: Deleting columns of data.

 - 19 -

Adding Columns. You may add columns (that is, variables, since each column represents a
single variable) to your dataset at any time. The key to remember when you wish to add data
is that only one type of variable may be added at a time. For example, you may add
Classification variables, or Covariates, but not both at once. If you wish to add more than
one type of variables, simply perform the Add operation more than once (each set of
variables must be stored in a different file). You may add multiple columns at once, though,
as long as they are the same type of variate. As with regular file imports, your variables must
each be in columns, in a space-separated text file. Unlike regular imports, files with data to
add as columns must be entirely numeric (no characters or strange typographical symbols
allowed). For example, you might wish to add two covariates to your dataset: air temperature
and wind speed. When you choose Add from the Edit - Modify Columns menus, a window
will pop up allowing you to select the file you wish to import. After you choose the file,
another window will pop up asking which type of data you are importing (giving you the
three variable types to choose from). Select one and press OK to import your file. LAMBDA
will tell you how many columns of data have been imported. If you change your mind or
make a mistake, simply press Cancel instead. Also, note that new columns come in with
numerical labels – you will need to edit them by hand to change these defaults.

 - 20 -

6 VIEWING AND SIMULATING DATA

The Data menu allows you to perform two operations; one is to view, plot, or sort any
dataset in memory, and the other is to generate simulated data. The simulation can be used to
make sure your MAR-1 model correctly estimates known parameters, or to see how different
types of parameter sets affect community structure and stability.

6.1Viewing and sorting data
Once your data are imported into LAMBDA, properly formatted, and labeled, it's a good idea
to view the dataset, to make sure everything looks correct. To do this, use the Data menu and
select View and then choose which variables to view (or “all”). This will provide you with a
table of all the columns, and up to 1,000 rows of data. If your dataset is more than 1,000
rows, only the first 1,000 will be shown in the preview. Note, this does not affect the data in
memory – the observations from 1,001 and up are still present; they simply are not displayed.
The reason for this cutoff is that longer tables can cause crashes in MatLab. Once you have
verified that the data look as you expected, you can clear this table from the main window by
using the Hide data preview option from the Data menu.

If your data are not sorted in the order you want, rows can be sorted by using the Data
menu's Sort dataset option. When you select this option a window will appear with three
pull-down menus. You may sort by one, two, or three different variables, as desired. Once
you have made a selection in the pull-down menu(s), you can sort the dataset. Choose OK to
sort the dataset by the variables you have chosen, or Cancel to cancel the operation.

6.2 Merging replicates
If you have multiple replicates, they are stored in “pages” (the 3rd dimension) of the MatLab
data array. This is useful for when you are analyzing data, as it keeps the replicates separate.
However, when exporting to a text file, or performing certain other operations, you will want
your data to all be in a single flat 2-dimensional array (with only rows and columns, but no
“pages”). You can do this by selecting the Merge replicates function from the Data menu.
LAMBDA will ask if you want to create a new variable to store the replicate number. If you
already have a variable that stores this information (such as the “lake number” in the data
from Ives et al. 2003), you will not need this functionality. However, if you do not have an
identifier for replicate built into your dataset, it is a good idea to use this feature. You can
always delete the extra column later if you find you do not need it.

Please note that multi-page data (stored as within-LAMBDA replicates) cannot be written to
a text file, so if you intend to export, you must merge replicates first. When saving files in
LAMBDA format, it is perfectly acceptable to have multiple replicates, since LAMBDA can
internally keep track of them for you.

6.3 Simulating data
The LAMBDA toolkit can perform simulations to generate MAR-1 type data. To bring up the
simulation window, select the Data -> Simulate MAR-1 process option. From here, you
will see the SimMar interface (Figure 6.1), which will allow you to simulate your own MAR-

 - 21 -

1 process. The window is organized into several frames, and the procedure for conducting
simulations is to go from left to right, top to bottom.

Figure 6.1: The SimMAR interface window

Thus, you begin first by setting the Simulation Conditions (top left frame), then the
Simulation Parameters (top right frame). Then you simulate the data, after which you can
display it by text or in a graphical plot. Finally, you can save or clear the data. Below, each of
the steps will be explained.

6.3.1 Simulation conditions
There are two simulations conditions that must be set before running simulations: the number
of replicates you wish to perform, and the number of time steps per replicate. These can be
set to any number desired but default to 2,000 replicates and 100 time steps. Simply type the
values you wish into the boxes and SimMAR will do the rest. If you want to restore the
default values at any time, just click the Defaults button.

6.3.2 Simulation Parameters
Once you have chosen how many replicates and time steps you wish, you must next set up
the simulation parameters. These are the A, B, and C matrices, as well as the equilibrium
conditions. Each of these must be stored in a text file. Begin with the top button, which lets
you import a B matrix from a text file, and go downward. All buttons must be pressed except
the Set A Values and Set Equilibria button. Because B is set, and the equilibrium depends

 - 22 -

on A and B, you can either set the equilibrium, and let SimMAR derive what the A must
have been (given the B matrix you have already provided) to get that equilibrium, or you can
set the A, and have SimMAR figure out what the equilibrium will be given that and the B
matrix. Do not do both… if you do both, whichever you do second will over-ride the
previous step. For example, if you set the A matrix, and then set the equilibrium conditions,
A will be changed to match the equilibrium and B matrices, over-writing your imported A
matrix.

The format of the text files is very specific. The B matrix must be a plain text file formatted
as a square table with the number of rows and columns equal to how many variates you have.
Below is an example of a valid B matrix.

0.5 -0.3 0.2 0.0
0.6 -0.1 -0.8 0.0
0.0 0.4 -0.3 -0.6
0.0 0.0 0.7 -0.2

The C matrix must always be included, even if you don’t want to include any influential
covariates in your model. It must also be a plain text file, with each column representing the
influence of a covariate, and each row representing each variate. Thus, the C matrix must
have the same number of rows as you have variates (and, therefore, as the B matrix). An
example of a two-covariate system in a four-species community is below:

0.4 -0.7
0.6 -0.2
0.1 0.5
0.0 0.0

If you don’t want any covariates to affect your model, make a text file with a single column
of zeros, like so:

0
0
0
0.

This will cause SimMAR to generate covariate data, but they will have no influence on the
system.

The A matrix, if you have one, must be a plain text file with the A values in a single column
(A is a column vector). The number of rows in this file must match the number of rows of the
B matrix, for example:

5.4346
7.0440
8.0790
1.1760

 - 23 -

This step is optional. If you don’t choose an A matrix, however, you then must choose the
other option, and provide SimMAR with the equilibrium densities of each species. Like the A
matrix, this must be a text file in a single column, with one row per species, for example:

10000
1000
500
100

These equilibrium densities can be in either log (base e) or linear format. SimMAR will ask
you which format you are using and will convert as appropriate.

Again remember, if you set the equilibrium density yourself, SimMAR will derive A from
those values. If you set A, it will derive the equilibrium densities. Therefore, you should only
do one of these two things, not both.

The final step to setting up the parameters is to decide what the starting population densities
are for the populations. There are three radio buttons here, where you can choose how to set
the starting values. The first is “percentage.” If you select this option (which is the default),
you will be asked for a percentage of the equilibrium value at which to start the population
sizes. You can choose this value separately for each species, and you can set a standard
deviation for it as well. Your starting population sizes will be the percent you specify in each
replicate, with variance based on the standard deviation you set. For example, suppose you
want all your populations to start at 33% of equilibrium with 10% standard deviation. You
would set these two numbers when the popup menu asks you for these values.

You can also choose to have the starting populations be completely random by selecting this
radio button. Completely random populations can start at any non-zero number, including
being way above equilibrium.

Finally, you can choose “from file,” in which case SimMAR will then ask for a text file
containing the starting population sizes. You can set these to anything you wish, in either log
(base e) or linear scales. SimMAR will ask you for the scale when you import the file. It will
also ask you for a standard deviation, which is measured as a percentage of the equilibrium
you set. For example, if Species 1 has an equilibrium population size of 10 individuals/ha
and you want a std of 1 individual/ha, you would set the std in that case to 10% (10% of 10
individuals/ha is 1 individual/ha).

If you want all the populations in each replicate to start at exactly the same size, set the
standard deviation to zero.

6.3.3 Simulate Data
There are three steps to data simulation. To make the computations proceed quickly,
SimMAR generates the entire matrix of process errors for all replicates in one step. This is

 - 24 -

because MatLab is faster at generating a large random matrix, that at generating a single
random value each time through an iterative loop – therefore, it is easier to pull out a value
from a large matrix, than to generate a new random value in each step. Your first step in
simulation, therefore, is to press the Generate Process Error button. This will bring up a
dialog box asking what standard deviation you wish (the mean process error is always 0). In
normal MAR-1 models, this value will usually be set to 1, but you can make it anything you
wish. The higher the value, the more random noise will be present in your dataset.

The next step is to generate the covariate values. Again, remember that this must always be
done, even if you don’t really want a covariate in your dataset. Whether a covariate
influences the system depends on the C matrix, so if you do not wish to have influential
covariates, simply import a C matrix of all zero values (see above). When you click the
Generate Covariates button, a new window for setting up the covariates will appear (Figure
6.2).

Figure 6.2: The covariate setup window.

This allows you to generate any number of covariates of five different process types – Linear,
Cycling, Exponential Decay, Michaelis-Menten, and Logistic. You will need to set up each
covariate, and you must have a number of covariates that matches the number of columns
imported in the C matrix import step (if you have one column there, you can only set up one
covariate here, and so on). The choice of covariate process is up to you – you can pick
whichever one is appropriate to the system you are simulating.

To choose one or more covariates of a given type, simply type the number of covariates of
that type in the “No. of Covars” box. For example, if you wanted two Linear and one
Logistic covariate, you would type a “2” in the top text box, and a “1” in the bottom one (see
Figure 6.2). Having chosen the number of covariates, you must now press the “setup” button,

 - 25 -

and set up the various parameters necessary to generate the covariate. These values will
differ with each covariate, and should be self-explanatory. For example, the linear model will
need to know the initial value (i.e., the intercept) and the mean change per time step (i.e., the
slope). The logistic model needs to know the initial value (N0), the rate of increase (r), and
the carrying capacity (K). You may name each covariate whatever you wish. By default they
are labeled by their type and a numeral, such as “Linear1,” “Linear2,” and so forth. If you
wish to see how your parameters will affect the pattern of the covariate, simply press the
“preview” button, and you will see a sample of 10 replicates of data for that covariate. This
should help you choose a function that looks the way you want for your covariates.

Once you have set up all the covariates (again, remember that the number of covariates set up
must equal the number you requested in the original SimMAR window), you can now
generate them. To do this, press the Generate Covar Data button. Ordinarily, covariates
will automatically be converted to the logarithmic (base e) scale. However, if you have
chosen parameters for your covariates that cause negative numbers to be generated, the
covariates will not be transformed. You have two choices in this case – you can either pass
the un-transformed (linear) values to LAMBDA for analysis (that is, keep them as is), or you
can modify your parameter values, and re-generate data until this does not happen. SimMAR
will warn you when negative values are present.

Having generated the covariate data matrix, you can plot it with the Plot Covar Data button.
If you are unhappy with the covariate data for any reason, you can clear it and start over. You
can also save the covariate data to a file for later use (for example, if you want to simulate
many different models with the same covariate data). Finally, you can use the Close
Window button to end your session. Any covariate data generated will now be passed to
SimMAR in preparation for the final model simulation.

Once you have generated process errors and covariates, you are now ready to run the
simulation model. This will use the starting population sizes, and the A, B, and C matrices
you have set, along with the covariate data you have generated, to produce a simulated time
series of population sizes for your community. Once produced, this dataset is fundamentally
indistinguishable from any other set of data you might import into LAMBDA. That is,
LAMBDA will not “know” in any way that it is simulated, and will treat the dataset normally.
This is very useful if you need to conduct simulation tests of whether your field data could be
properly analyzed by LAMBDA.

6.3.4 Text and Plot Display
You can use the Display Parameters button at any time to display what the simulation
parameters were. You can use the Display Data button to show the data. Note, this will
show you all the data for a given replicate of a given type (e.g., variate data), and if you have
a lot of data this could take a long time to display. You can also display the data visually, by
using the Plotting buttons. The process error, the covariates, and the variates can all be
graphed so you can see what the simulation results were in a visual way.

 - 26 -

6.3.5 Saving Simulated Data
Once you have simulated the model, you can save the data to a file. Since the data are stored
in LAMBDA format, this allows you to call up the data in later sessions of LAMBDA without
having to re-do the simulation. When you select the close button, you will be asked if you
wish to retain the data for further use in LAMBDA. If you say no, all the data in memory will
be lost, so make sure you have saved your data if you want to keep it, or answer “yes” and
use the LAMBDA file menu to save the data (or other features to manipulate it). Typically,
after simulating the data, one would choose “yes” to have data passed to LAMBDA, and then
conduct regular MAR-1 operations on the simulated data.

The main purpose of this simulation feature is to allow the user to do two things: (1) you can
see how MAR-1 processes work under different sets of parameters, and (2) you can verify
that the CLS or ML estimates of the MAR-1 parameters (A, B, and C) are correct, by
comparing the MAR-1 estimates with what you input for your simulation. Most significantly,
if your MAR-1 estimates are not very similar to your simulation parameters, something is
going on and you should not proceed to analyze real data until you have determined what is
causing the discrepancy. Note, you should not expect your numbers to agree exactly, but they
should be reasonably similar; if you input A = [0,0] and the MAR-1 estimated values are A =
[-10,+8], you know there is a problem. On the other hand, if with the same input values for
the simulation, the MAR-1 estimate was A = [-0.1,0.2], that would probably be within reason
(you can use estimates of confidence intervals to see if these are statistically significant
differences). How close you can expect the MAR-1 model to get with a simulation depends
on the length of the time series, as well: a 100 year time series will provide better estimates
than a 5-year series. You should also check the coefficients of determination (R2), and make
sure they are reasonably good. Very low R2 values indicate something may be wrong with
the simulation, or with the analysis.

6.4 Plotting data
You can plot the data in memory using the Plot Data feature on the Data menu. When you
execute this command, it will provide you with a list of survey variables. Choose the one you
wish to plot your data against. You will then be able to select whether to plot biomass, count,
or covariate data against this survey variable. Finally, you can choose whether to view the
data on a logarithmic (base e) or linear scale. For example, you might choose to plot year
against biomass on a log scale, or to plot site against covariate values on a linear scale. A
separate plot will be generated (in its own window) for each variable in the dataset of the
type you have chosen. For instance, if your dataset includes the biomass of beavers,
mosquitoes, and ferrets, you will see three plot windows (one for each species).

6.5 Keeping a record of your manipulations
It is always important to know, for a given dataset, exactly what you did to the raw data
before an analysis. If you get strange results, for example, you need to be able to answer the
question, “Did I forget to log-transform the data?” LAMBDA provides this feature for most
data manipulations. To see what LAMBDA has recorded in terms of your data manipulations,
choose Show Data Manipulations from the Data menu. This information is always stored
along with the data in a LAMBA dataset. This is helpful if, months after an analysis, you
can’t remember what you did. Simply load the LAMBDA file, and view the data

 - 27 -

manipulations, and you will immediately know if rows were deleted, columns edited, and so
on.

 - 28 -

7 SCALING, POOLING, AND DESCRIPTIVE STATISTICS

Often, your raw data will not be in a form where it can be analyzed directly. You may wish
to scale it, pool it, or take means or other such statistics before running your MAR-1 model.
For instance, suppose you have a variate with the number of brittlestars captured in multiple
samples with a trawl net. Each time you sampled, the net would've been dragged for a
slightly different distance along the bottom. Assuming you have a column of data describing
this differential sampling effort, you would need to scale your sample estimates by the area
swept, to get a density estimate. Otherwise, you could be comparing the number of
brittlestars captured in a 50 m2 sweep with the number captured in a 5 m2 sweep – which is
clearly inappropriate. Additionally, you may wish to pool your data in various ways; for
instance, you might want to pool all species in a given family into a single Family-level
estimate. You may also wish to transform the data, particularly since the MAR-1 process is
designed to work with log-transformed data. And finally, you may wish to take averages or
other simple statistics across groups of samples, such as the mean biomass per m2 in a region.
The Statistics menu can help you with all of these steps.

7.1 Scaling the data
If your data were collected using potentially different amounts of sampling “effort” (e.g.,
different tow distances, different core volumes), you will need to scale each variate as
appropriate. This will leave you with a “density” estimate, with units depending on your
sample units, but usually something like number/m2 or g/L. To convert raw counts or
biomass to density measures, open the Statistics menu and hold the mouse over the Density
option. This will bring up a secondary menu with three options. The first will allow you to
compute or otherwise tell LAMBDA what the sampling effort or area was, and the other two
perform the conversion.

7.1.1 Computing sampling effort.
Before you can convert your data, you will need to tell LAMBDA which Classification
variables contain the sampling effort information. To do this, open the Statistics->Density
menu and choose Compute Sampling Area/Effort. This will bring up a new window with
four options for how “effort” (or area) is represented in your dataset. The first option is to
simply tell LAMBDA that the data are already in density format. This is equivalent to
canceling the operation – it will make no change in the dataset. The second option is for
when you have the area (or other representation of sampling effort, such as volume) in a
single variable. For example, you might have volume, in L, recorded in one column of data
called Liters. If so, you would choose this option. The third option is for people with
length and width of sampling effort in two different variates. This is very common with
trawl-type surveys, where the width of the net is known (and constant) and the length varies
from tow to tow.

Once you have selected your option by clicking on the circular radio button, press OK and
you will be shown a new window. If your effort or area information is in a single column of
data, LAMBDA will ask which column of data contains the information. Choose the column
from the pull-down menu, and select OK. No re-scaling will be done yet. If your effort data
are in two columns, the new window will ask you to specify which two columns contain the

 - 29 -

data, and also ask you for the units of each one. The pull-down menu for units will allow you
to choose cm, m, or km. If your data are in other units (such as inches) you will need to
convert them. Below this is an area where you can choose the output units. Make sure you
specify units of your variables and the output correctly, or you may end up with numbers that
are surprising (for example, if you put in information in m2 and get the output in ha, and
weren’t expecting it, your densities might surprise you). Again, no re-scaling will be done
yet. All you are doing here is telling LAMBDA what columns contain your sampling effort.

7.1.2 Scaling the variates or covariates.
Once you have computed your sampling effort (area, volume, etc.), you can convert your
data to be in the units of effort (such as m2) that you have given LAMBDA in the previous
step. Open the Statistics->Density menu and choose Convert variates to Density
estimates or Convert covariates to sampling effort as appropriate. Please note that, at this
time, LAMBDA either converts all or none – you cannot ask it to convert only some variates.
In many cases covariates will not need to be scaled; temperature, for example, is not
measured based on density. You will need to use your judgment as to when you need to
convert data, and when you do not. Once you select one of these options, LAMBDA will
warn you that you are about to convert your dataset, and give you the chance to cancel the
operation. After you select OK, the dataset in memory will be converted by dividing each
observation by the corresponding effort (e.g., dividing number captured by m2). This cannot
be undone, so you should save your dataset before performing this operation.

Once you have completed the re-scaling, your observations should all be in the same units,
and you will be able to proceed with other operations (such as taking means, or log
transforming).

7.2 Pooling the data
There are two ways to pool, or group, your data: by row, or by column. In each case, pooling
amounts to summing across all observations within the pool. For example, suppose you have
two columns, fish biomass and plankton biomass, and you pool them to get total biomass. An
example of how the pooling would be done is listed below.

fish plankton pooled total
4.2 3.0 7.2
2.4 2.2 4.6
5.8 1.1 6.9
1.1 0.3 1.4

Because the pooling returns a simple sum of the variables pooled, you must make sure your
data are scaled and in the appropriate units before hand. Otherwise, you could be adding 4.2
g of something to 100 mg of something and end up with 104.2 (clearly this is incorrect).

7.2.1 Pooling by column
You may wish to add up several of the columns in your dataset. To sum columns and merge
them, choose Statistics->Pool the data and select by Columns. A new window will pop

 - 30 -

up asking if you want to pool Variate or Covariate data. You must select one; if you wish to
pool data in more than one of these category types, simply perform the operation again and
choose another. After you click the radio button (circle) for which data type you wish to pool,
select OK and a new window will pop up. This will list all the variables in that category (e.g.,
all the variates). You can select any of them, or all of them, to pool. Choose individual
columns to pool by holding down the ctrl key as you click, which allows you to “cherry pick”
each column you want. You can also select all of them using the button on the bottom with
that name, if you wish.

When you have completed your selection, choose OK, and LAMBDA will sum up the
observations in those columns, creating a new variable to store that sum. The new column
will be named mrg_<name>, where <name> is the name of the very first variate you
selected (topmost in the list box). Unlike row-based pooling, your old data columns will not
be deleted or changed using this operation – it will simply create a new column.

7.2.2 Pooling by rows
The other way to pool a data is by row. Normally a row of data corresponds to things that
were all sampled at the same time, in the same place, etc. For example, consider the
following dataset, where the year and sampling station are two of the survey variates, and the
number of birds and fish counted are variates.

Year Station birds fish
1977 1 10 100
1977 2 11 90
1977 3 9 27
1978 1 30 182
1978 2 22 88
1978 3 11 144
1979 1 12 25
1979 2 44 41
1979 3 33 69

All the data from station 1 in year 1977 would be placed on the same row, so that in 1977 at
station 1, you counted 10 birds and 100 fish. You might only care about annual differences,
and not which station you sampled at. In this case, you could pool by rows, and all the values
for birds would be added up for each year. For instance, in 1977 there were 30 total birds and
217 total fish counted. Pooling by rows will add up the values in each column separately
(fish and birds will be kept separate, in this example). Note that this is a simple summation; if
you want something more complicated such as means, modes, or medians, use the Compute
Descriptive Statistics operation.

When you choose the By Rows operation, a new window will pop up. The window includes
a drop-down menu where you can select which column of data you wish to pool by. It will
also ask what the minimum and maximum values are (values outside of this will be

 - 31 -

eliminated from the dataset), and, most importantly, the increment. In our example, if we
wished to pool by year, we would set the minimum to 1977, the maximum to 1979, and the
increment to 1. If we’d set the increment to 3 or higher, then all the years would’ve been
lumped together (since we only have 3 years of data). If we set the increment to < 1, then
some rows would be generated with zeros, since there is no “year 1977.5” value in the
dataset. Make sure you carefully examine your dataset before merging by rows. It is often
better to subsample the dataset and take descriptive statistics, than to pool by rows.

7.3 Transforming the data
The standard transformation algorithms in biostatistics are provided for your convenience.
Please note that usually, for MAR-1 models, data should be transformed by the natural
logarithm. Additionally, one may desire to transform the log-transformed variables further
into a z-score (Hampton and Schindler 2006). The other transformations are available for
your convenience, but are not usually appropriate for MAR-1 models. The options available
are taking the logarithm (base 10 or base e), taking the square root, or taking the arcsine-
square root, and taking the z-score. You can select any of these from the Statistics menu by
choosing the Transform Data option. Again, the primary one you should use for MAR-1
model analysis is the natural, or base e, logarithm. After you make your selection, a new
window will appear asking which type of variable you wish to transform. Note that this step
will change the dataset in memory, so saving your data before transforming it is highly
recommended. You should also pool data, and perform any other such operations before
transforming it. However, descriptive statistics can be computed afterwards, as well as before
(depending on your needs).

7.4 Computing descriptive statistics
The descriptive statistics option will allow you to compute simple descriptive statistical
moments such as mean, standard deviation, coefficient of variation, and the like, for your
data. You can classify the data using up to five classification variables, and you can have the
variables incremented however you like. For example, you might want to know the mean
number of organisms captured per decade, in which case, you would select “Year” as the first
variable, and then set the year increment to “10.” This will cause LAMBDA to compute
statistics for each 10-year period. Note that if you ask for increments in which there are
elements with no data, LAMBDA will substitute zeros for all places where there is no data.
This can be most easily seen by cases where N (sample size) is listed as zero.

Once statistical moments have been computed, they can be displayed individually, or all at
once. This is accomplished with the Display Statistics menu option. Note that once the
display window is up, a menu will appear in its upper left corner, also called Display
Statistics, which will allow you to change which statistical moments are displayed.

From the File menu, statistical analysis can be saved to a file, loaded from a file, or exported
to a comma-separated text file. Note that LAMBDA-formatted statistics files are stored with a
*.zst filename extension.

 - 32 -

7.5 Plotting Statistics
Statistical moments can be plotted as bar, scatter, or line plots, in 2D or 3D. A plot in 2D
normally consists of a display of a single statistic, such as the mean, for all the increments of
a variable (for example, year or decade). The user may choose to display error bars taken
from any column (most commonly, these are taken from the Standard Deviation or Standard
Error column). If you have more than one variate (for example, several species in different
columns) a separate plot will be made for each one. Also, note that 3D plots only work with
exactly (no more, no less) 2 class variables. These are the class variables chosen when the
statistics are computed (you can have as many as you want in the raw dataset). For example,
suppose you had a dataset with Year, Station, and Altitude as your classification (Survey)
variables. You could only have a 3D plot made of your statistics if, when you computed your
statistics, you used only two of the three as your classification variables.

Also, note that for cases where there are two classification variables as part of the statistics,
and 2D plots are done, LAMBDA will not make plots if the first classification variable has
more than 10 categories. For example, suppose you have 100 years of data at 2 stations.
LAMBDA plots a single graph for each category of the first variable. If you list Station first
(and then year second, i.e., year within stations), you would have two plots for each species,
with year on the X-axis and mean, variance or other statistical moments you have chosen on
the Y-axis. However, if you had year first, LAMBDA would give an error message, for
otherwise, it would be drawing 100 graphs (showing the statistics at the two stations on one
graph for each year). Such an operation is likely to crash many computers, and so LAMBDA
simply will not allow it. Either pool your data so that there are less than 10 categories, or
switch around which classification variable you list first, so that the one with the fewest
categories is listed first.

LAMBDA does not support plotting in the case of three or more classification variables at
this time. Please note that LAMBDA’s statistical plotting elements are rather primitive
because plotting descriptive statistics is not its primary function. Statistical data should
probably be exported to another package (e.g., SigmaPlot) if one wishes to make high-quality
plots of descriptive statistics.

 - 33 -

8 SUBSAMPLING THE DATA
Whenever one wishes to look at only a subset or small segment of the data (less than all of
it), it is time to take a subsample of the data. This is accomplished through the options listed
in the Subsample menu at the top of the main LAMBDA window. Note that it is not
possible at this time to perform the subsampling operations on datasets that contain multiple
replicates, and LAMBDA will provide an error message if you attempt this. However,
subsampling can be used to generate new replicates from a dataset. See below for further
details.

8.1 The Subsample window
The first item in this menu, Subsample Data, will bring up a new window. This window
allows the user to set up the parameters for a subsample. Note that nothing will be done to the
dataset yet. At this point you are simply setting up the parameters for a subsequent step. In
the Subsample window, you will be allowed to select ranges of any Classification, Variate, or
Covariate variable that you wish. For example, imagine the following dataset:

Year Station birds fish
1977 1 10 100
1977 2 11 90
1977 3 9 27
1978 1 30 182
1978 2 22 88
1978 3 11 144
1979 1 12 25
1979 2 44 41
1979 3 33 69

You might wish to look only at the “Station 1” data. In this case, you would select Station
for the Field (in the drop-down menu), and then select the desired range. LAMBDA provides
a set of options for the minimum and maximum. One option is always “all,” which means
that you are not actually subsampling this variable (it will use every entry). The second
option is “nonzero,” which is useful for culling missing or zero values out of the dataset. The
other options will be the minimum to the maximum value in that variable, with 20 increments
in between. In our example dataset, this would be values ranging from 1 to 3, in increments
of 0.05. Since in this case Station is in whole numbers, and we want cases where the
station = 1, selecting a minimum of 1 and a maximum of 1.05 would do the trick. All of the
stations over 1.05 (that is to say, the 2s and 3s) would be eliminated with such a subsampling
scheme, and only Station 1 would be left. When you have the values you desire for the field's
minimum and maximum, click the Subsample button, and this range of values will be saved
in memory for later use. You will see a list of the subsampling scheme appear (and be
updated as you go along) on the right hand side of the window.

You can subsample as many things as you want. For instance, you might wish to subsample
Year from 1977—1978, Station only for station 1, and only cases where birds where
over 30 and fish were below 100 individuals. To do this, select each field separately (the
order in which you choose them does not matter), choose the minimum and maximum, and

 - 34 -

then click Subsample. If at any point you decide you have made a mistake, the entire
subsampling scheme can be cleared (and re-set) using the Clear button. The Cancel button
will close the window without doing anything.

When you are happy with your subsampling scheme, click Done, and the window will close,
and the subsampling scheme will be saved in memory. The subsample scheme will not yet be
applied to the dataset. Instead, a second, subsampled dataset will be created in memory – one
that fulfills only the scheme you have generated. For example, it will contain only data from
Years 1-3, at Station 2, if those are the subsample criteria you had selected.

8.2 Viewing, sorting, and saving the subsampled data
You can view this subsampled dataset using the Display->View Subsampled Dataset
menu option. You can also sort this dataset, review your subsample criteria, and plot the
subsampled data from the Subsample menu options. Finally, if you are happy with the
subsample, you can save it under the File ->Save Subsample As... menu item, and you can
load a saved subsample as well, so that you can work across multiple LAMBDA sessions.

8.3 Applying your subsample to the full dataset
Finally, if you decide you want to apply the subsample to the entire dataset, choose the menu
option Apply Subsample criteria to full database, and the main data in memory will be
altered accordingly. This process cannot be reversed, so make sure to save your work before
doing this. Because the MAR-1 operations, Descriptive statistics, and other operations can
only be performed on the full database (not the subsample dataset), you will need to perform
this operation before conducting any analysis on the subsampled data.

8.4 Subsampled data as replicates
Often, you will have all your data in one large dataset, but will want to consider parts of it
(subsets of it) as replicates. For example, you might have sampled your time series at
different locations, and you might want to assume each sample site is a replicate of the whole
community. Again consider the following dataset:
Year Station birds fish
1977 1 10 100
1977 2 11 90
1977 3 9 27
1978 1 30 182
1978 2 22 88
1978 3 11 144
1979 1 12 25
1979 2 44 41
1979 3 33 69

Here, you might wish to consider the three sample stations as replicates. However, they are in
the same dataset. To split them up into different replicates, so that you can run a separate
MAR-1 analysis on each, you can use the Subsample features. Invoke the subsample window
(section 9.1) and choose the first value range to subsample (for the first replicate). In this
example, we would choose the field as Station and the min and max to be 1.0 and 1.05. This

 - 35 -

subsample would include only lines of data where the Station was between 1.0 and 1.05 (in
other words, Station = 1 in our example dataset). After closing the subsample window, we
would then choose options from the Replicate menu:

Notice that the first option is Define current subsample as a replicate. This is what we
would use. You have a subsample that includes only “Station 1” data. You can define this
subsample to be a single replicate. It would be stored in a temporary dataset (until you apply
it when finished) as “Replicate #1.” You could then continue to subsample, creating a new
subsample for station 2, and then defining that as another replicate, and then station 3, and so
forth. When you’re done with these definitions, you can choose Apply subsampled
replication to database. As with the operation applying normal subsampling to the
database, this is an irreversible step, so make sure you save your data first, if necessary. From
the Replicate menu you can also display any of the replicates you have generated using
subsampling, to check your work.

One important note: Replicate datasets must have the same number of records (lines of data,
or steps in the time series). For example, if you have 100 time readings for station 1, and only
25 for station 2, you cannot split them up into replicates within the same dataset. LAMBDA
will produce an error if you attempt to do this, and will not allow you to apply the replicates
to the full database.

 - 36 -

9 MAR-1 MODEL ESTIMATION
Estimating a MAR-1 model is, of course, is the whole reason one would use LAMBDA,
rather than some other package: its ability to easily, at the click of a few buttons, perform a
CLS or Maximum Likelihood based estimate of the MAR-1 model for your time series.
Please note that before using the features on the MAR-1 menu, you will need, at a minimum,
to have done the following:

 Loaded a dataset containing at least one variate column.
 Made sure the dataset is in LAMBDA format.
 Transformed the data using the natural logarithm.
 Scaled the data by the sampling effort3.
 Pooled or subsampled the data so it consists of a single time series, or a set of several

replicate time series4.

To use the MAR-1 estimation system correctly, all of the above elements are required. Make
certain, in particular, that you have a single time series for your data (per replicate), and that
you do not have multiple readings for a given species on a given date. Either pool your data
by station, depth, etc., or subsample the data (converting to replicates if necessary –see
section 9.4), for example doing a MAR-1 model for station 1, then station 2, and so on.

9.1 Choosing the estimation method
Currently there are three estimation methods for MAR-1 models available in LAMBDA. The
Conditional Least Squares (CLS) method employs standard conditional least-squares
techniques to find the best model fit for your time series data. This is a quick estimation
method, and is recommended by Ives et al. (2003) due to computational efficiency. You can
choose this method by selecting CLS Parameter Estimation from the MAR-1 menu.The
other two methods are similar, in that they are both Maximum Likelihood (ML) methods.
The more standard Simplex method (which is also discussed in Ives et al. [2003]) uses
MatLab’s built in minimization techniques (the fminsearch function). It provides slightly
poorer estimates (according to my tests), and takes a much longer time and is more
computationally intensive than CLS estimations. Therefore I highly recommend against this
method. The other ML method is called “Simulated Annealing,” and is, in my experience,
slightly slower than CLS, and equally accurate. These methods usually end up agreeing with
each other if done properly, so which method you choose is largely a matter of preference,
but from my extensive tests, I see no reason to use anything other than CLS estimates, since
the other methods, at best, give the same answer, in slightly to greatly increased periods of
time.

 9.2 Determining which interactions to use
Perhaps the most crucial step, once your data are ready to be analyzed, is to determine
exactly which interactions should, and should not, be used. Ideally, one should have some a
priori expectations or biological intuition about the data and the interactions, from having

3 Convert biomass to kg per square meter, or counts to number per hectare, or the like, so that the data are
standardized.
4 That is, you should not have data from multiple stations still listed together in the dataset – pool, averge, sum,
or subsample so there is only one reading for each species on each sample date (see chapter 8).

 - 37 -

worked on the system previously or communicated with those who know it well. However,
this is often not the case, because frequently the interactions are simply unknown. More
commonly, you will probably know a few of the interactions (or have good reason to suspect
them) but not the rest. LAMBDA can handle all of these cases, from manually specifying the
model, to a fully randomized parameter search for the most likely model.

9.3 Manually specifying the model
If you have some good reasons why you think certain interactions should be used and others
should not, you can tell LAMBDA explicitly, by choosing each one by hand.

For either estimation method (see section 9.1), you can select Manually specify which
interactions to use. You will then be presented with a list of the variates in a new window.
At this stage you can cancel or re-set things, or you can select a single variate, and a new
window will be presented. The window will show a list of variates, on the left, and
covariates, on the right. There are two columns for the variates, with arrows pointing left and
right. Use the arrow buttons to move variates from one column to the other. The “triple
arrow” will move all the variates or covariates from one column to the other. Use the arrows
to move variates and covariates back and forth until you have selected the ones you want to
interact, and not interact, with the species of interest. You will need to do this for each one of
your variates. When you click Apply, the list of known variate and covariate interactions will
be updated, and you can continue to the next variable in the Specify Interactions window.

 As an example of how this works, imagine a dataset with the biomass variates Shrimp,
Crabs, Birds, and the covariates Temp and WindSpd. The Specify Interactions
window will have a list of the three variates (Shrimp, Crabs, and Birds). You would click on
the first one, Shrimp, and then click the Choose button. The next window would list the
three variates on the left, and the two covariates on the right, with two columns available to
each. To start with, none of the variates or covariates would be presumed to affect the
biomass of Shrimp in your system.

 Let us assume that you would expect Shrimp to always have an effect on themselves
(density dependence). To require this interaction, you would click on Shrimp in the left-
most column, and then click the arrow pointing to the right. Shrimp would move to the
right column, as a required interaction. Let us also assume that you want crabs, but not birds,
to interact with shrimp (you are sure the birds do not eat or otherwise interact with the shrimp
in your system, for instance). You would then click on Crabs and use the arrow to move
them to the right as well. Then, let's imagine you think temperature but not wind speed
affects shrimp biomass. You would then click on Temp and use the arrow button to move it
to the right on the covariate side of the window. At this stage, you have set things so that
Shrimp are affected by themselves and crabs, but not birds, and by temperature, but not wind
speed. If you are happy with that, you would select Apply, and the interaction matrix would
be updated. You would then repeat this procedure for birds and crabs, and so on until all
variates have their interactions specified. Once this is done, you can move on to the latter
parts of the analysis.

 - 38 -

9.4 Iterative Search and Model Estimation
Most of the time, unfortunately, you will not be lucky enough to know which interactions
occur in your system, so you will have to let LAMBDA search to find them. Note that doing
the search and estimating the model are one step in the ML technique but are separate steps
for CLS (they are not built into the procedure).

CLS searches and estimates: To perform a CLS search to find the proper interactions,
choose CLS search over state space from the MAR-1->CLS Parameter Estimates
menu.

Currently, LAMBDA estimates this by iterating as many times as you wish (the default is
500, and I recommend not using any less iterations than that), starting with a random
interaction and covariate matrix, and for each iteration, cycles over the cells in the matrices,
changing one at a time. Over these iterations LAMBDA estimates the A, B, and C matrices
and determines the Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC), at your discretion, for each step. The AIC and BIC are based on a combination of (1)
how likely the model is given the data, and (2) a penalty for including more and more
variates. The routine is thus designed to find the most likely model possible, using the fewest
possible interactions. Note that self-interactions (the diagonal of the matrix) are fixed to 1,
because density dependence is assumed to at least play a small role in all systems. After
performing the search, LAMBDA will tell you which interactions it thinks it should include,
and which it should exclude (1 = include, 0 = exclude, the interaction in question).

Note that this search only finds the interactions to be included or excluded. It does not
perform the actual analysis. You must choose Run MAR-1 model with CLS estimates to
perform the actual analysis. This will then run the model and find the CLS estimates of the
parameters.

ML Searches: To perform a Maximum Likelihood analysis, choose Run MAR-1 model
with ML estimates from the menu.

 - 39 -

Unlike the CLS, the search step and the final estimate occur all at once. Maximum
Likelihood searches (either using classical MatLab fminsearch, or using Simulated
Annealing) keep searching over the possible variables, changing them bit by bit, until they
settle on a final result, which (if done right) is the most likely model given the data. Once this
is complete, LAMBDA will report the final model parameters.

9.5 Combining iterative search and manual specification
You can combine the two approaches, which is useful if you know for a fact certain
interactions occur in your system (or at least strongly suspect it) but do not know about the
others. However, note that because ML searches and final estimates occur in one step rather
than two, the combined approach can only be done with CLS estimation. To do this, you
should first let LAMBDA do the iterative CLS search. It will come up with a set of
interactions that it is basically proposing to you. Then, you can select the Manually specify
which interactions to use option, and when the interaction window comes up, you will see
the interactions LAMBDA thinks are appropriate. You can move them around as usual, and
then save the result. This will provide a hybrid model between the iterative and manually
specified methods.

9.6 Saving and clearing estimates
If you wish to re-run the model (for example, to compare the two ML methods or to compare
the CLS and ML method), you can save your MAR estimates using the File menu. You can
then clear them from memory (wiping the slate clean so you can perform another analysis)
using the Clear MAR estimates option from the MAR-1 menu.

9.7 Assessing the model fit
Once you have estimated the MAR-1 model for your system, you can assess how well the
model fit. There are two menu options for doing this, which must be done in a particular
order. First, you can select Assess CLS Model fit, which will compute and display in the
command window the total and conditional R2, as well as the Σ matrix. This first step must
be done before you can compute AIC and BIC, because it also computes the likelihood,
which is needed for the AIC/BIC computation. The next menu option, Compute
information criteria, will compute and display the least squares or maximum likelihood AIC
and BIC for your model.

9.8 Computing stability properties
The Ives et al. (2003) paper computes three stability properties – Variance, Return Rate, and
Reactivity – each in two ways. LAMBDA will perform the same computations for your
model. Choose Compute Stability Properties to have this step performed. The information
will be displayed in the command window. For an explanation of what the terms mean,
please consult the text of Ives et al. (2003).

9.9 Computing MAR-1 across many replicates
If your dataset consists of more than one replicate, then each procedure (including the
iterations) needs to be done for each replicate. This is automatic within LAMBDA: you do
not have to do anything special. LAMBDA will scan your data set and, if more than one
replicate exists, it will simply cycle over all replicates, finding the CLS or ML estimates of

 - 40 -

the parameters, assessing model fits, and computing dynamical properties for each replicate
in turn.

The output of a multi-replicate dataset may be slightly difficult to read, as it is stored in the
3rd “dimension” of a MatLab array. Usually when one has many replicates, one is interested
in the mean values of the parameter estimates in any case, and LAMBDA can provide these
for you. After your estimates are complete and dynamical properties computed, choose
Compute mean MAR values across reps, and LAMBDA will take the average of the A,
B, C, and other values it has computed, including AIC, BIC, dynamical properties, and the
like. You can display any or all of these values to the command window by choosing
Display mean MAR values from the MAR-1 menu. When you select this option,
LAMBDA will ask if you wish to save these values to a text file. If you choose Yes, you
must supply a file name, and then what you see in the command window, will also be saved
to a comma-separated text file (csv).

Note that, because computations can take a long time, LAMBDA saves its work if you have
multiple replicates, storing its estimates as each replicate is concluded. This information is
stored in the LAMBDA/work directory in a file called WORK.mat. If your computer crashes,
or you otherwise terminate LAMBDA by any means other than the File-> Close LAMBDA
option, this WORK.mat file will remain in the LAMBDA/work directory. The next time
LAMBDA is started, you can re-start your MAR-1 analysis and LAMBDA will pick up where
it left off (it will ask if you wish to do this). Note: At the time of this writing (version 0.9.0)
this data storage is only done with CLS estimates, not with ML estimates.

9.10 Bootstrapping the model
 You can bootstrap your model to obtain confidence limits. Basically, this procedure
randomizes the E (process error) matrix, and re-runs the model. This can be done any
number of times, though the default is 2,000. When done, a BOOT structure will be produced,
containing all the iterations of the bootstrap. This is then used for later steps (there is no need
to view it). After running the bootstrap, you can compute the confidence limits, which will be
stored in the CONFLIM structure. This structure contains the confidence limits. The text in
the command window tells you how the information is stored, and it can be displayed from
the command line. Alternatively, you can choose the View Confidence Limits option, and a
new window will be produced. This will provide you with buttons and you can examine the
confidence limits of the bootstrapping this way. You may also choose to Write confidence
limits to a file, if you wish to save the bootstrap results for later analysis or for use by
another program. Finally, to make it easy to tell whether CIs overlap the zero values, you can
display (and save to a file) the B and C matrices in a “pretty printed” format. Simply choose
the “Significant Interactions” button when using the “View Confidence Limits” window.

Please note that replicated data cannot be bootstrapped. LAMBDA will only perform a
bootstrap analysis on dataset that is contained in a single replicate. If you wish, you can
bootstrap individual replicates of your dataset and store them. Remember that the whole
reason to bootstrap a dataset, however, is to create simulated replicates to generate error
estimates, confidence limits, and the like. With replicated data, you do not need to do a

 - 41 -

bootstrap – the replicates can provide you with estimates of error, which you can view using
the Show non-zero species interactions option from the MAR-1 menu.

9.11 Normal Probability Plots
In addition to numerical analysis, LAMBDA can also provide normal probability plots of the
residuals in each of our variates. The bottom option on the menu will execute this command.
Consult a standard statistics text for an explanation of what these plots display.

9.12 Saving MAR-1 Estimates
The MAR-1 estimation process can take a long time, and once it is done, it is best to save it
in case you ever need to examine it again. This can be done from the File -> MAR menu.
Also from that menu, older MAR-1 estimates can be re-loaded (so, for example, if you wish
to re-examine an earlier analysis, you can do using this menu option).

9.13 Tools for evaluating MAR-1 estimates
The MAR->Tools menu provides some simple tools for evaluating MAR-1 estimates. For
example, sometimes one has a “known” (or previously computed) B matrix, and wants to
know the Stability properties of it. These can be computed by using the first option to check
the stability of a known matrix. A window will appear asking for an input text file (*.txt).
This should be a file containing your B matrix in text format. Once you select the file, the
stability properties will be reported in the command window.

Additionally, you may wish to know if the top N interactions (with the highest absolute
value) found by the MAR-1 estimation step, compare with those in a known B matrix (for
example, the one you used for a simulation, or one from another sampling site). You will
need to have performed a MAR-1 estimate first. Then choose this option from the menu, and
select the text file containing the B matrix to which you are comparing the estimates. You
will then be asked to tell LAMBDA how many interactions matter. This is up to you – you
will need to decide which interactions are strong enough that they “count,” and which are
not. By default, LAMBDA assumes one interaction matters per species, but you may change
this to any amount you wish. LAMBDA will then compare the top N interactions in the
known B matrix, with those in the estimated matrices, and report on the percent correct. For
example, if the estimate got 3 of the top 4 interactions correct, this would yield a 75%
similarity.

Finally, if you wish to see the distribution (rather than just the mean and standard deviation)
of the various stability properties, you can use the Plot Frequency Distribution option from
the tools menu to accomplish this. Note that this function only works if there are two or more
replicates of the data.

9.14 Estimating Elasticity and Sensitivity of the B matrix
One can calculate the elasticity and sensitivity of any square matrix. Sensitivity is the effect
on the eigenvalues (λ) of a change in a given pair-wise interaction. Since in MAR-1 models l

 - 42 -

is the stability of the system, then Sensitivity in this context becomes “the sensitivity of the
stability” to changes in the B values. Elasticity is the proportional response to a proportional
perturbation of the system. Thus, elasticity can be seen as “proportional sensitivity.” Whether
these computed values are of any real interest will depend on the system being studied, and is
left up to the judgment of the investigator.

 - 43 -

10 SETTING PREFERENCES FOR LAMBDA
The Edit menu has an option for setting preferences in LAMBDA. Choosing this option
brings up a checklist. You can use the checklist to select which options you wish to use. If
the box is checked, it means the option is turned “on.” Most of these involve telling LAMDA
whether or not to keep giving warnings about potential challenges to the data analysis – if
you are sure of what you are doing, you can turn these off. However, two other options bear
further explanation because their meaning is not obvious.

10.1 The use of “inlined” code
Because it makes the use and maintenance of code easier, LAMBDA is written almost
entirely as a suite of function calls. Thus, when you ask LAMBDA to perform a MAR-1
analysis, it must first generate the U, X and Y matrices from your data, which it does by
passing the data into the GenU and GenXY functions. LAMBDA must then generate CLS fits
using the CLSfit function, and then assess those fits with the assessCLSfit function,
and so forth. Each of these functions is used repeatedly in the code, which is why it makes
sense to build a single function, and call it multiple times, rather than to write the same code
over and over again as a single script.

Unfortunately, such a scheme is not possible when using parallelized code (see below), and
sadly, it also slows down computations considerably (by a factor of about two). So it is
actually faster to run a script that has the same code pasted into it, over and over again, than
it is to call those lines of code repeatedly as functions. The drawback to this increased
computational speed, is that the code is less easily maintained. If the CLS fits are done in one
function, and I find a bug in the CLS fit algorithm, it is corrected once (in the function) and is
thereby fixed throughout the entire program. However, if the code is repeated four or five
times in one file (rather than as a function call), the bug will have to be corrected in every
case, and it is always possible to miss doing one of them. Thus, it is harder to make
corrections in all the necessary places when the code is linear (“inlined” code) rather than
written by function calls.

The correct way to code depends on your needs, of course, but my own preference is for
maintainable and bug-free code over computational speed. As a result, I coded LAMBDA to
be function-based, rather than “inlined.” However, because of the needs of Star-P, and the
needs some folks will have to speed up their computations, I have included an “inlined”
version. Why should you pick one over the other then? Well, if you want speed, you would
choose the “inlined” option (or use Star-P, which would be even faster). However, almost all
of my work was done using the function-based version on a single desktop. As such, I have
beaten that to death and am absolutely certain the functions are bug-free. The inlined version
is much newer, and although I do not believe there are any bugs, I cannot be quite as certain
about it. It will never be possible to be quite as certain, because any time a change is made in
that inlined version, it will have to be made numerous times, and so there is always a greater
chance of an error.

I therefore recommend not using the inlined version, unless your time requirements are such
that it is the only practical choice. The functional form is in a more advanced state of

 - 44 -

development and less likely to contain errors. I will note that so far as I know, the inlined
version is free of errors as well but, ultimately, with that version you are “taking your
chances.” The code is open source of course, so you are welcome to check it yourself and
make sure it is correct (if you can understand my coding habits and comment style).

10.2 The Star-P option
Star-P is a version of MatLab created by a different company (with the permission of The
Mathworks), designed to run on parallel computers (a single machine with two or more
processors). Ordinarily Matlab executes code sequentially. In other words, if you have 80
replicates, and you have one processor, the replicates are done one at a time. With a parallel
machine having, say, eight processors, Star-P can “farm out” one replicate to each
processor, thereby resulting in a much higher computational speed. Although in theory this
should be about an eight-fold increase, our tests thus far have only yielded a 2-3 fold increase
over the inlined version. Since that version is about double the speed of the functional form
(see above), this amounts to a 4-6 fold increase in computation speed relative to using the
functional form of LAMBDA on a single-processor desktop under standard MatLab.

If you have access to a Star-P server, you can use this faster version of LAMBDA with it.
You should start Star-P first (see your system administrator for details on how to do this).
Once it is up and running, you may execute LAMBDA normally. LAMBDA is able to detect
that you have Star-P running, and will ask you if you wish to use the Star-P version of the
functions. If you choose “yes,” LAMBDA will run CLS estimates (and only those) in parallel.
All other operations, including ML estimates, are done in series, not in parallel, so no
performance benefit can be derived from using Star-P for those operations. In other words,
the only time you should use the Star-P version is for doing CLS estimates of large datasets
with many replicates.

At this point, the Star-P compatibility should be considered to be in “pre-Beta” stages. I
have used it enough to be fairly sure it works properly, but unless a large number of people
request Star-P functionality, I don’t plan on adding any further Star-P features to
LAMBDA. If you wish further parallelization, you can contact me with the request, and I will
take it under advisement. However, please understand that this is provided as a convenience,
and I do not consider it to be critical to the basic functioning of LAMBA. (In other words, it
is not a top priority.)

 - 45 -

APPENDIX 1: QUICKSTART GUIDE
This quick-start guide will give you a very brief script to follow for quickly importing data
from text files and doing a basic MAR-1 analysis (with nothing fancy).

1. Start up LAMBDA by changing to the LAMBDA directory and typing “lambda” at
the MatlLab command prompt.

2. Click on the File menu and select Import -> From a text file.

3. Navigate through the directory structure until you find your text file and select it.

4. Select which variables in your dataset are Classification variables

5. Next, select which ones are variates (i.e., species of interest). Whatever is left over (if
anything) will be classified as a co-variate.

6. Make sure your data were imported correctly by clicking on the Data menu and
choosing the view -> all option.

7. Click on the statistics menu and choose transform the data -> natural logarithm.

8. Click on the MAR-1 menu, select CLS Parameter Estimation, and choose search
over state space…

9. Once the search is complete, again select MAR-1 -> CLS Parameter Estimation
but this time choose Run MAR-1 model with CLS estimates.

10. Click on the MAR-1 menu and choose Assess model fit.

11. Click on the MAR-1 menu and choose Compute Information Criteria.

12. Click on the MAR-1 menu and choose Compute Stability Properties.

13. Click on the File menu, and choose MAR -> Save MAR Results.

14. Your MAR-1 model results will be displayed in the command window.

 - 46 -

APPENDIX 2: FLOW CHART OF LAMBDA PROCEDURES

 - 47 -

	1 Introduction
	1.1 About this document
	1.2 System Requirements
	1.3 Terms and Conditions
	2 Overview
	2.1 So what is LAMBDA?
	2.2 So what is a MAR-1 Process?
	2.3 Further reading
	2.4 Who would want to use LAMBDA?
	2.5 How to use this book
	2.6 Acknowledgments

	 3 Getting Started
	3.1 Obtaining a copy of LAMBDA
	3.2 Installing LAMBDA
	3.3 Running LAMBDA

	 4 Data Files and Formats
	4.1 Data Formats, Variables, and Observations
	4.2 Types of Data
	4.3 Importing data
	4.3.1 Importing raw (text-file) data
	4.3.2 Importing an EXCEL file
	4.3.3 Adding a replicate to an existing dataset

	4.4 Loading and saving formatted data
	4.5 Exporting data to other applications

	 5 Editing and Modifying Data
	5.1 Loading column labels from a file
	5.2 Editing column labels by hand
	5.3 Adding and deleting columns

	 6 Viewing and Simulating Data
	6.1Viewing and sorting data
	6.2 Merging replicates
	6.3 Simulating data
	6.3.1 Simulation conditions
	6.3.2 Simulation Parameters
	6.3.3 Simulate Data
	6.3.4 Text and Plot Display
	6.3.5 Saving Simulated Data

	6.4 Plotting data

	 7 Scaling, Pooling, and Descriptive Statistics
	7.1 Scaling the data
	7.1.1 Computing sampling effort.
	7.1.2 Scaling the variates or covariates.

	7.2 Pooling the data
	7.2.1 Pooling by column
	7.2.2 Pooling by rows

	7.3 Transforming the data
	7.4 Computing descriptive statistics
	7.5 Plotting Statistics

	 8 Subsampling the Data
	8.1 The Subsample window
	8.2 Viewing, sorting, and saving the subsampled data
	8.3 Applying your subsample to the full dataset
	8.4 Subsampled data as replicates

	 9 MAR-1 Model Estimation
	9.1 Choosing the estimation method
	 9.2 Determining which interactions to use
	9.3 Manually specifying the model
	9.4 Iterative Search and Model Estimation
	9.5 Combining iterative search and manual specification
	9.6 Saving and clearing estimates
	9.7 Assessing the model fit
	9.8 Computing stability properties
	9.9 Computing MAR-1 across many replicates
	9.10 Bootstrapping the model
	9.11 Normal Probability Plots
	9.12 Saving MAR-1 Estimates
	9.13 Tools for evaluating MAR-1 estimates
	9.14 Estimating Elasticity and Sensitivity of the B matrix

	 10 Setting Preferences for LAMBDA
	10.1 The use of “inlined” code
	10.2 The Star-P option

	 Appendix 1: Quickstart Guide
	 Appendix 2: Flow chart of LAMBDA procedures

