An intfroduction to multivariate state-
space models, using multi-site population
data as the example




Topics

Lecture

» Short example of multivariate observations

> Examples of multivariate structure in population data
> How to express these structures mathematically

» Adding a multivariate observation process

» Model comparison using AIC and AIC weights

Computer Labs
> Analysis of population structure using multi-site data

» Combining diverse data sources to estimate an underlying model



Imagine we have 3 sampling locations for

a population (denoted x).

Location 1
mark-recapture

Location 3
‘ line transect

Location 2
mark-recapture



Mathematically we can express this like

X =X_,+Uu+w,w ~N(0,Qq)
Yie = X TV Vi ~ N (ai’ rl)
Yor =XtV Vo — N (az’ rz)

Y3r = X V3, V3 ~ N (8.3, r3)

population

observations . .
size noise



The observation part can be rewritten as

a matrix

observations

|
 —

1

Z matrix

We need to fix one of the a’s.
Traditionally we fix to O.

X, +

population
size




The model with one a fixed to zero

_yl_ 1 0 _vl_
Y, | =|1|X +|a, [+]|V,
Y3 |, 1 a3 | [ Vs

population

observations Z matrix sjze bias noise



The observation errors are multivariate normal.

The variance-covariance matrix tells you how the
observation errors are related. Are they independent? Or do
they covary? Do have the same variance or difference
variances?

N (.2 1)

V, | ~MVN|0,| 7, 7722 173 2




_7712 .
0 7, O
0O O 7732

unique variances and
uncorrelated errors

diagonal

The observation errors have a var-cov matrix

“equal varcov”

n” 0 0
0 n° O
0 O 772_

identical variances and
uncorrelated errors




Example of errors coming from these

variance-covariance matrices
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Some short examples. Estimates x with 3

observation time series

* lecture_3_example_1.R
+ lecture_3_example_2.R
+ lecture_3_example_3.R




Multi-site data (Pacific harbor seals)
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An example: modeling the population dynamics of

harbor seals in Puget Sound, WA
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Let's hypothesize (and model) that the

population has 3 subpopulations
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A multivariate model for 3 subpopulations

Multivariate stochastic exponential growth

X3k 1 XIF t-1 Usr €t
XNt XN t-1 Uy En
Xst | | Kspa | LUs _eS,t_\
\ 3 different
3 mean process errors
3 different x's, one population
for each growthrate e ~ MVN(0,Q)
subpopulation terms



The population model in matrix notation

X = Xy v U+ Wy

w; ~ MVN(O,Q)

Each parameter has "structure”. Different
structures imply different population structure.



The mean population growth rates (u) can

have spatial structure

U, U
Uy U
| uS _ _u_
unconstrained (all different) all the same
U,
uN&S
Unes_

Strait of Juan de Fuca different
North and South same



The process error var-cov matrix can

have structure: e, ~MVN(0,Q)
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We observe x and those observations have
error

sea lion




The obs. err. model specifies how the observed time

series are related to the true subpopulation sizes
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The observation model

true population “hidden"

Log of
counts

Z matrix

relates each

observation time measurement
series to a errors
different state
observations process observation biases



The observation errors have a var-cov matrix
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Instead of N, S, Str. J subpopulations, we could have

other combinations and numbers of subpopulations

srar |1 0 O 1 00 1]
Sanisl. |1 O O 010 1
E.Bays [0 1 O 0 0 1 1
PS.10 0 1 0 01 1
Hood C. _0 0 1_ _0 0 1_ _1_
Str of Juan de Fuca & San Strait of Juan de Fuca = One Puget Sound
Juan Is sites = 1st subpop 15" sub pop population and all
Eastern bays = 2nd San Juan Is sites = 2nd sites are sampling it
Hood C. & S. Puget S. = 3rd Eastern bays, Hood Canal & One population

S. Puget Sound = 3@




The harbor seal multivariate state-space model

(MSSM) ... in matrix form

3x1 vectors

AN

X, =X,_, +Uu+w, where w, ~ MVN(0,Q)

3X3 matrix

Y, = ZX, +a+V, where v, ~ MVN(0,R)

\ / 5x5 matrix

5x1 vectors



* We can add covariates that to explain some of

the variability - Lecture 3

X, =X, +U+Cc,_, +w,
y, =ZX, +a+Dd, +\,

c and d are covariates (like
temperature) that you are
using to explain some of the
variability - -
Cii Gy P

Cc, = Ci, Cpy, X

RERRSYE



Computer lab

Chapter 7 & 8: Identifying spatial structure and
covariance in harbor seals on the west coast of the USA




Place names you'll see in the code
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Computer lab #1: Get used to multivariate

modeling

Chapter 7: Combining multi-site data to estimate
regional population trends

» RShowDoc("Chapter_SealTrend.R",package="MARSS")
» Work through through the chapter and text on your own.

Puget Sound Harbor Seal Surveys

log(counts)

1980 1985 1990



Computer lab #2: Use model select to

test hypotheses about subpop structure

Chapter 8: Identifying spatial structure and covariance
in harbor seals on the west coast of the USA

» RShowDoc("Chapter_SealPopStructure.R",package="MARSS")

»> Work through to section 8.4
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