


A little bit about me

e | am a quantitative ecologist at a federal research lab

Northwest Fisheries Science Center

National Marine Fisheries Service

National Oceanic & Atmospheric Administration
Seattle, WA USA

e | am also an affiliate faculty member
School of Aquatic and Fishery Sciences

University of Washington

e | work in a research group that develops statistical
methods for the analysis of multivariate time series
data



e |n addition to teaching and publishing, | serve on federal
scientific teams charged with analyses relating to status and
risk assessment and management decisions

— Endangered and threatened species
— Pacific NW salmon

— Puget Sound herring

— Puget Sound rockfish

— Southern Resident killer whales

— Steller sea lions

— Lake and marine plankton

— Plus many other marine mammals

http://faculty.washington.edu/eeholmes




Overview of the uses of
multivariate auto-regressive state-
space modeling

X, =BX_,+CcC, +U, +W,

Y, =ZX +Dd +a +V,




Combining multi-site data to estimate trends and

identify spatial structure
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 QObservation error
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Estimating the effects of covariates and seasonal

drivers on population growth

High flows Low flows
Necessary for preserving taxonomic and functional diversity
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Fish species

Desert fish native and non-native Recommendations
response to flash flood events in about flow
dry and wet season management



Developing forecasting models based on the

relationship between fish abundance and covariates
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Estimating species interactions to understand

community function and to forecast
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Dynamic Factor Analysis (DFA)

;3!4 salmon stocks, 50 yrs
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The multivariate AR state-space model

X = tht—l CtCt U, +W,
Y, =ZX +Dd +a +V,

w, ~ MVN(0,Q,)
v, ~MVN(O,R,)



All the material | will cover is here:
http://tinyurl.com/Kochi2014

E. E. Holmes, E. J. Ward, and M. D. Scheuerell

Analysis of multivariate time-
series using the MARSS package

version 3.10.1

MARSS User Guide

Northwest Fisheries Science Center, NOAA
S e, Wi




Analysis of RANDOM WALKS
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Random walks, aka AR processes, arise often

in the analysis of fisheries data

* Many biological processes depend on the past

Today = f(Yesterday) + noise

* animal movement
* gene frequency

* population growth
- fish
- algae
- birds



Classical time-series analysis focuses on stationary
data. Population data is often non-stationary.
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Topics

Introduction to univariate AR state-space models
> Definition of process versus observation error
» Hands on with some R code and simulations.

» Adding density dependence (feedbacks)

Pop. Estimate of Monk Seals
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Topics

Introduction to multivariate AR lag-1 state-space models
» Integrating multi-site data into a single population estimate

» Creating forecasting models using time-series data and
covariates
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Example of univariate data: Count data

Yearly (usually)
population (or
subpopulation)

counts
Pop. Estimate of Monk Seals
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Some of the variability is due to the population
and some is due to observation error




Suppose we have some count data (logged).
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What about fitting a regression line through

the data?

y, =a,+ pt+2,;z, ~ Normal(0, o)

8.5

Not an estimate of population size!
Estimate of temporal trend.
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Regression is fitting a deterministic process

through the data
all variability = “observation error”
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Versus fitting an autoregressive state-space

model

Autoregressive state-space models fit a
- RANDOM WALK through the data
variability = “observation error” + “process error”
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Two types of variability

#1 observation or “non-process” variability
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variability

35




The observation variance (and bias) is often

unknowable

+ Sightability varies (year-to-year, day-to-day,
etc.) due to a myriad of factors that may not be
fully understood or measureable

» Sampling variability--due to how you actually
count animals--is just one component of
observation variance



Two types of variability

#2 Process variability

log(N)
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Process error is the difference between the expected

population size and the actual value

Let’s say that the mean rate of decline is 2% per year*...

N

e\x process error at time t
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The process error leads to characteristic random

walks: AR lag-1 with drift

All trajectories came from the same model:
N,= N;_; exp(-0.02+e,), e, was Normal(mean=0.0, var=0.01)
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How can we separate process and observation

variance? They affect a time series differently.

Process error: N, = N.; exp(u+e,),
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A state-space model combines a model for the hidden AR-1

process with a model for the observation process

log(N)
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...and allows us to separate the variances
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To fit this model, we have to write it mathematically

Population growth

Observations

. N, is population size
X, =log(N,) |
Exponential growth
X, = X4 tU+W, N mode

Normally distributed

Wt — NOI’ma| (O, q) process errors

Yi = |Og(Ot)
Y =X TV,

Log-normally

Vt ~ Norma| (O, r) distributed

observation errors

@.



Let’s simulate and try fitting some models

* Open up R and follow after me

* Lecture_2_univariate_examp
* Lecture_2_univariate_examp
* Lecture_2_univariate_examp

e 1R
e 2R
e 3R



Deterministic, vs. obs. error, vs. proc.

An example using population decline

a deterministic 2% per year decline
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Count

Count
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How you model your population data has a large

impact on projection of the process

Process error only
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State-space model with density-dependence

termed ‘mean-reverting’. --—-Day 3--

N, =exp(u+¢)N>,
—p Xt =(DX. _, + U+ et Log-space

e, ~ Normal(0, q)

VYWeak density-dependence Strong density-dependence
3000 a 3000
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b<1: Gompertz density-dependent process



Computer labs
from the MARSS User Guide

Chapter 6: Count-based population viability
analysis (PVA) using corrupted data

library(MARSS)
~ RShowDoc("Chapter_PVA.R", package="MARSS")




ESTIMATION OF GROWTH AND EXTINCTION

1991 PARAMETERS FOR ENDANGERED SPECIES!
BRIAN DENNIS
Doncstasassd af Cavact Rocasisroc s Ad Donnstssonnt af Mathosanticre and SQtn tiStiCS,

Estimating risks in declining populations 2001
with poor data

Elizzbath E. Holmes*

-

ESTIMATION OF POPULATION GROWTH AND EXTINCTION
PARAMETERS FROM NOISY DATA
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2003

STEVEN T. LINDLEY!

BEYOND THEORY TO APPLICATION AND EVALUATION: DIFFUSION
APPROXIMATIONS FOR POPULATION VIABILITY ANALYSIS

2004 Ecology Letters, (2008) 11: E1-ES5 doi: 10.1111/j.1461-0248.2008.01211.x

Nation TECHNICAL .
COMMENT Commentary on Holmes et al. (2007): resolving the S

debate on when extinction risk is predictable

Abstract
Stephen P. Ellner'* and Elizabeth  We reconcile the findings of Holmes « al. (Ecology Letiers, 10, 2007, 1182) that 95%
E. Holmes’ confidence intervals for quasi-extunction nsk were narow for many vertebrates of

r . . . . . . - . ’
Department of Ecology conservation concem, with previous theory predicting wide confidence intervals. We



